Synthesis and Opto-electronic Properties of BODIPY o-OPhos Systems.


Journal

Photochemistry and photobiology
ISSN: 1751-1097
Titre abrégé: Photochem Photobiol
Pays: United States
ID NLM: 0376425

Informations de publication

Date de publication:
11 2020
Historique:
received: 15 05 2020
accepted: 25 06 2020
pubmed: 6 7 2020
medline: 22 6 2021
entrez: 5 7 2020
Statut: ppublish

Résumé

Herein, we report the versatile synthetic strategy and opto-electronic properties for the phosphorylation of BODIPY derivatives 5aa-5ak by substituting with an electron-donating/withdrawing group at the ortho position. Nevertheless, this new methodology relatively promotes the tolerance of the aldehyde moiety and the high yield for the synthesis of BODIPY o-OPhos derivatives. The photophysical studies suggest improved optical properties due to the inductive effect of various electron-donating/withdrawing groups. The UV-visible and the emission data suggest that BODIPY o-OPhos derivatives emphasize the property of the excited states with an increase in fluorescence intensity and high quantum yields due to the presence of bulky phospsho-triester at the meso- position which hinders the free rotation around the C-Ar bond and facilitates the development of OLEDs and various organophosphorus warfare agents. Electrochemical studies reveal 5ak depicts the ease of redox activity amongst the 5aa-5ak derivatives. The density functional theory indicates the highest occupied molecular orbital on the BODIPY moiety whereas the lowest unoccupied molecular orbital delocalized on BODIPY and the phospho-triester moieties. Thus, the unique development of the novel BODIPY derivatives with improved optical and redox properties pave the way for fluorescent probes and bioimaging techniques.

Identifiants

pubmed: 32621763
doi: 10.1111/php.13306
doi:

Substances chimiques

4,4-difluoro-4-bora-3a,4a-diaza-s-indacene 0
Boron Compounds 0
Fluorescent Dyes 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1182-1190

Informations de copyright

© 2020 American Society for Photobiology.

Références

Liu, Z., Z. Jiang, M. Yan and X. Wang(2019) Recent progress of BODIPY dyes with aggregation-induced emission. Front. Chem. 7, 712.
Kaur, P. and S. Singh (2019) Recent advances in the application of BODIPY in bioimaging and chemosensing. J. Mat. Chem. C 7, 11361-11405.
Kolemen, S. and E. U. Akkaya (2018) Reaction-based BODIPY probes for selective bio-imaging. Coord. Chem. Rev. 354, 121-134.
Ho, D., R. Ozdemir, H. Kim, T. Earmme, H. Usta and Ch Kim (2019) BODIPY-based semiconducting materials for organic bulk heterojunction photovoltaics and thin-film transistors. ChemPlusChem 84, 18-37.
Li, G., W.-W. Xiong, P.-Y. Gu, J. Cao, J. Zhu, R. Ganguly, Y. Li, A. C. Grimsdale and Q. Zhang (2015) 1,5,9-Triaza-2,6,10-triphenylboracoronene: BN-embedded analogue of coronene. Org. Lett. 17, 560-563.
Ni, Y. and J. Wu (2014) Far-red and near infrared BODIPY dyes: synthesis and applications for fluorescent pH probes and bio-imaging. Org. Biomol. Chem. 12, 3774-3791.
Lu, H., J. Mack, Y. Yang and Z. Shen (2014) Structural modification strategies for the rational design of red/NIR region BODIPYs. Chem. Soc. Rev. 43, 4778-4823.
Boens, N., V. Leen and W. Dehaen (2012) Fluorescent indicators based on BODIPY. Chem. Soc. Rev. 41, 1130-1172.
Loudet, A. and K. Burgess (2007) BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem. Rev. 107, 4891-4932.
Shah, Md F, A. Mirloup, T. H. Chowdhury, S. Alexandra, A. S. Hanbazazah, A. Ahmed, J.-J. Lee, N. Leclerc, M. A. Shakour and A. Islam (2019) A near-infrared thienyl-BODIPY co-sensitizer for high-efficiency dye-sensitized solar cells. Sustain. Energy Fuels 3, 2983-2989.
Chapran, M., E. Angioni, N. J. Findlay, B. Breig, V. Cherpak, P. Stakhira, T. Tuttle, D. Volyniuk, J. V. Graulevicius, Y. A. Nastishin, O. D. Lavrentovich and P. J. Skabara (2017) An ambipolar BODIPY derivative for a white exciplex OLED and cholesteric liquid crystal laser toward multifunctional devices. ACS Appl. Mater. Interfaces 9, 4750-4757.
Rao, R. S., A. Bagui, G. H. Rao, V. Gupta and S. P. Singh (2017) Achieving the highest efficiency using a BODIPY core decorated with dithiafulvalene wings for small molecule based solution-processed organic solar cells. Chem. Commun. 53, 6953-6956.
Yang, B., J. Xiao, J. I. Wong, J. Guo, Y. Wu, L. Ong, L. L. Lao, F. Boey, H. Zhang, H. Y. Yang and Q. Zhang (2011) Shape-controlled micro/nanostructures of 9,10-diphenylanthracene (DPA) and their application in light-emitting devices. J. Phys. Chem. C. 115, 7924-7927.
Bui, H. T., D. K. Mai, B. Kim, K.-H. Choi, B. J. Park, H.-J. Kim and S. Cho (2019) Effect of substituents on the photophysical properties and bioimaging application of BODIPY derivatives with triphenylamine substituents. J. Phys. Chem. B 123, 5601-5607.
Sun, J., H. Yang, O. Simalou, K. Lv, L. Zhai, J. Zhao and R. Lu (2019) Mechanofluorochromic behaviors of triphenylamine functionalized salicylaldimine difluoroboron complexes. New J. Chem. 43, 10134-1014.
Li, Y., N. Song, L. Chen, S. Liu and Z. Xie (2017) Synthesis of a near-infrared BODIPY dye for bioimaging and photothermal therapy. Chem. Asian J. 13, 989-995.
Jang, Y., T.-I. Kim, H. Kim, Y. Choi and Y. Kim (2019) Synthesis of a near-infrared BODIPY dye for bioimaging and photothermal therapy. ACS Appl. Bio Mater. 2, 2567-2572.
Lu, Z., W. Fan, X. Shi, C. A. Black, C. Fan and F. Wang (2018) A highly specific BODIPY-based fluorescent probe for the detection of nerve-agent simulants. Sens. Actuator B: Chem. 255, 176-182.
Kim, T.-I., S. B. Maity, J. Bouffard and Y. Kim (2016) Molecular rotors for the detection of chemical warfare agent simulants. Anal. Chem. 88, 9259-9263.
Roacho, R. I., A. J. Metta-Magaña, E. Peña-Cabrera and K. H. Pannell (2013) Synthesis, structural characterization, and spectroscopic properties of the ortho, meta, and para isomers of 8-(HOCH2-C6H4)-BODIPY and 8-(MeOC6H4)-BODIPY. J. Phys. Org. Chem. 26, 345-351.
Hu, R., E. Lager, A. Aguilar-Aguilar, J. Liu, J. W. Y. Lam, H. H. Y. Sung, I. D. Williams, Y. Zhong, K. S. Wong, E. Peña-Cabrera and B. Z. Tang (2009) Twisted intramolecular charge transfer and aggregation-induced emission of BODIPY derivatives. J. Phys. Chem. C 113, 15845-15853.
Anitha, T., K. C. Ashalu, M. Sandeep, A. Mohd, J. Wencel-Delord, F. Colobert and K. R. Reddy (2019) LiI/TBHP mediated oxidative cross-coupling of P (O)-H compounds with phenols and various nucleophiles: direct access to the synthesis of organophosphates. Eur. J. Org. Chem. 2019, 7463-7474.
Perrin, D. D., W. L. F. Armarego and D. R. Perrin (1980) Purification of Laboratory Chemicals. Oxford, UK.
Frisch, M. J., G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox (2009) Gaussian 09. Gaussian Inc, Pittsburgh PA.
Dennington, R., T. Keith and J. Millam (2009) GaussView, version 5. Semichem Inc., Shawnee Mission KS.
O’Boyle, N. M., A. L. Tenderholt and K. M. Langner (2008) cclib: A library for package-independent computational chemistry algorithms. J. Comput. Chem. 29, 839-845.
Cossi, M., V. Barone, R. Cammi and J. Tomasi (1996) Ab initio study of solvated molecules: A new implementation of the polarizable continuum model. Chem. Phys. Lett. 255, 327-335.
Becke, D. (1993) Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648-5652.
Peterson, G. A. and M. A. Al-Laham (1991) A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J. Chem. Phys. 94, 6081-6090.
Sunahara, H., Y. Urano, H. Kojima and T. Nagano (2007) Design and synthesis of a library of bodipy-based environmental polarity sensors utilizing photoinduced electron-transfer-controlled fluorescence ON/OFF switching. J. Am. Chem. Soc. 129, 5597-5604.
Li, J., C. Yang, X. Peng, Y. Chen, Q. Qi, X. Luo, W.-Y. Lai and W. Huang (2018) Stimuli-responsive solid-state emission from o-carborane-tetraphenylethene dyads induced by twisted intramolecular charge transfer in the crystalline state. J. Mater. Chem. C. 6, 19-28.
Li, J., X. Peng, C. Huang, Q. Qi, W.-Y. Lai and W. Huang (2018) Control of circularly polarized luminescence from a boron ketoiminate-based π-conjugated polymer via conformational locks. Polym. Chem. 9, 5278-5285.
Wan, Y., J. Li, X. Peng, C. Huang, Q. Qi, W.-Y. Lai and W. Huang (2017) Intramolecular charge transfer induced emission from triphenylamine-o-carborane dyads. RSC Adv. 7, 35543-35548.
Duvva, N., K. Sudhakar, D. Badgujar, R. Chitta and L. Giribabu (2015) Spacer controlled photo-induced intramolecular electron transfer in a series of phenothiazine-boron dipyrromethene donor-acceptor dyads. J. Photochem. Photobiol. A: Chem. 312, 8-19.
Giribabu, L., K. Jain, K. Sudhakar, N. Duvva and R. Chitta (2016) Light induced intramolecular electron and energy transfer events in rigidly linked borondipyrromethene: Corrole dyad. J. Lumin. 177, 209-218.
Aijun, C., X. Peng, J. Fan, X. Chen, Y. Wu and B. Guo (2007) Synthesis, spectral properties and photostability of novel boron-dipyrromethene dyes. J. Photochem. Photobiol. A: Chem. 186, 85-92.
Soni, D., N. Duvva, D. Badgujar, T. K. Roy, S. Nimesh, G. Arya, L. Giribabu and R. Chitta (2018) Hypochlorite-mediated modulation of photoinduced electron transfer in a phenothiazine-boron dipyrromethene electron donor-acceptor dyad: A highly water soluble "turn-on" fluorescent probe for hypochlorite. Chem. Asian J. 13, 1594-1608.
Bumagina, N. A., A. Kriskaya, E. V. Anita, M. B. Berezin and A. I. Vyugin(2018) Effect of aklyl, aryl, and meso-Aza substitution on the thermal stability of BODIPY. Rus. J. Inorg. Chem. 63, 1326-1332.

Auteurs

Thipanni Anitha (T)

Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, Telangana, India.
Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, New Delhi, India.

Madoori Mrinalini (M)

Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, New Delhi, India.
Polymer & Functional Materials Division, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, Telangana, India.

Damera Vani (D)

Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, Telangana, India.
Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, New Delhi, India.

Seelam Prasanthkumar (S)

Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, New Delhi, India.
Polymer & Functional Materials Division, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, Telangana, India.

Kallu Rajender Reddy (K)

Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, Telangana, India.
Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, New Delhi, India.

Lingamallu Giribabu (L)

Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, New Delhi, India.
Polymer & Functional Materials Division, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, Telangana, India.

Articles similaires

Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Humans Formins Phosphorylation Exosomes Jurkat Cells
Protein Processing, Post-Translational Humans Blood Coagulation Fibrin Fibrinogen
Humans Induced Pluripotent Stem Cells Schizophrenia Neural Stem Cells DNA Damage

Classifications MeSH