Into the wild blueberry (Vaccinium angustifolium) rhizosphere microbiota.


Journal

Environmental microbiology
ISSN: 1462-2920
Titre abrégé: Environ Microbiol
Pays: England
ID NLM: 100883692

Informations de publication

Date de publication:
09 2020
Historique:
received: 06 02 2020
revised: 01 07 2020
accepted: 02 07 2020
pubmed: 6 7 2020
medline: 7 4 2021
entrez: 6 7 2020
Statut: ppublish

Résumé

The ability of wild blueberries to adapt to their harsh environment is believed to be closely related to their symbiosis with ericoid mycorrhizal fungi, which produce enzymes capable of organic matter mineralization. Although some of these fungi have been identified and characterized, we still know little about the microbial ecology of wild blueberry. Our study aims to characterize the fungal and bacterial rhizosphere communities of Vaccinium angustifolium (the main species encountered in wild blueberry fields). Our results clearly show that the fungal order Helotiales was the most abundant taxon associated with V. angustifolium. Helotiales contains most of the known ericoid mycorrhizal fungi which are expected to dominate in such a biotope. Furthermore, we found the dominant bacterial order was the nitrogen-fixing Rhizobiales. The Bradyrhizobium genus, whose members are known to form nodules with legumes, was among the 10 most abundant genera in the bacterial communities. In addition, Bradyrhizobium and Roseiarcus sequences significantly correlated with higher leaf-nitrogen content. Overall, our data documented fungal and bacterial community structure differences in three wild blueberry production fields.

Identifiants

pubmed: 32623832
doi: 10.1111/1462-2920.15151
doi:

Substances chimiques

Nitrogen N762921K75

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3803-3822

Subventions

Organisme : Natural Sciences and Engineering Research Council of Canada
ID : RGPIN-2018-04178
Pays : International

Informations de copyright

© 2020 Society for Applied Microbiology and John Wiley & Sons Ltd.

Références

Adesemoye, A.O., Torbert, H.A., and Kloepper, J.W. (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58: 921-929.
Agriculture and Agri-Food Canada (2019). Little Berry, Big Impact. URL http://www.agr.gc.ca/eng/about-us/publications/discover-agriculture/little-berry-big-impact/?id=1412014431201
Allen, T.R., Millar, T., Berch, S.M., and Berbee, M.L. (2003) Culturing and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots. New Phytol 160: 255-272.
Bais, H.P., Weir, T.L., Perry, L.G., Gilroy, S., and Vivanco, J.M. (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57: 233-266.
Bardgett, R.D., and McAlister, E. (1999) The measurement of soil fungal: bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands. Biol Fertil Soils 29: 282-290.
Bent, S.J., and Forney, L.J. (2008) The tragedy of the uncommon: understanding limitations in the analysis of microbial diversity. ISME J 2: 689-695.
Berg, G. (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84: 11-18.
Brundrett, M.C., and Tedersoo, L. (2018) Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol 220: 1108-1115.
Cairney, J.W.G., and Meharg, A.A. (2003) Ericoid mycorrhiza: a partnership that exploits harsh edaphic conditions. Eur J Soil Sci 54: 735-740.
Caldwell, B.A., Jumpponen, A., and Trappe, J.M. (2000) Utilization of major detrital substrates by dark-Septate, root endophytes. Mycologia 92: 230-232.
Callahan, B.J. (2018) Silva for dada2: Silva taxonomic training data formatted for dada2 (silva version 132). Zenodo.
Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J., and Holmes, S.P. (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13: 581-583.
Chekireb, D., Crovadore, J., Brachmann, A., Chablais, R., Cochard, B., and Lefort, F. (2017) Whole-genome sequences of 14 strains of Bradyrhizobium canariense and 1 strain of Bradyrhizobium japonicum isolated from Lupinus spp. in Algeria. Genome Announc 5: e00676-e00617.
Close, D., Ojumu, J., and Zhang, G. (2016) Draft genome sequence of Cryptococcus terricola JCM 24523, an oleaginous yeast capable of expressing exogenous DNA. Genome Announc 4: e01238-16.
Dalpé, Y. (1989) Ericoid mycorrhizal fungi in the Myxotrichaceae and Gymnoascaceae. New Phytol 113: 523-527.
Dalpé, Y. (1991) Statut endomycorhizien du genre Oidiodendron. Can J Bot 69: 1712-1714.
de Cáceres, M., and Legendre, P. (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90: 3566-3574.
de Vries, F.T., Griffiths, R.I., Bailey, M., Craig, H., Girlanda, M., Gweon, H.S., et al. (2018) Soil bacterial networks are less stable under drought than fungal networks. Nat Commun 9: 3033.
Dedysh, S.N., Liesack, W., Khmelenina, V.N., Suzina, N.E., Trotsenko, Y.A., Semrau, J.D., et al. (2000) Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50: 955-969.
Dedysh, S.N., Berestovskaya, Y.Y., Vasylieva, L.V., Belova, S.E., Khmelenina, V.N., Suzina, N.E., et al. (2004) Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands. Int J Syst Evol Microbiol 54: 151-156.
Dunfield, P.F., Khmelenina, V.N., Suzina, N.E., Trotsenko, Y.A., and Dedysh, S.N. (2003) Methylocella silvestris sp. nov., a novel methanotroph isolated from an acidic forest cambisol. Int J Syst Evol Microbiol 53: 1231-1239.
Esposito, A., Colantuono, C., Ruggieri, V., and Chiusano, M.L. (2016) Bioinformatics for agriculture in the next-generation sequencing era. Chem Biol Technol Agric 3: https://doi.org/10.1186/s40538-016-0054-8.
Fierer, N. (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15: 579-590.
Frostegård, Å., Tunlid, A., and Bååth, E. (1991) Microbial biomass measured as Total lipid phosphate in soils of different organic content. J Microbiol Methods 14: 151-163.
Frostegård, Å., Tunlid, A., and Bååth, E. (2011) Use and misuse of PLFA measurements in soils. Soil Biol Biochem 43: 1621-1625.
Grelet, G.A., Johnson, D., Paterson, E., Anderson, I.C., and Alexander, I.J. (2009) Reciprocal carbon and nitrogen transfer between an ericaceous dwarf shrub and fungi isolated from Piceirhiza bicolorata ectomycorrhizas. New Phytol 182: 359-366.
Grelet, G.A., Ba, R., Goeke, D.F., Houliston, G.J., Taylor, A.F.S., and Durall, D.M. (2017) A plant growth-promoting symbiosis between Mycena galopus and Vaccinium corymbosum seedlings. Mycorrhiza 27: 831-839.
Haegeman, B., Hamelin, J., Moriarty, J., Neal, P., Dushoff, J., and Weitz, J.S. (2013) Robust estimation of microbial diversity in theory and in practice. ISME J 7: 1092-1101.
Harrel, F.E.J. (2020) Hmisc: Harrel miscellaneous.
Hennecke, H., Kaluza, K., Thöny, B., Fuhrmann, M., Ludwig, W., and Stackebrandt, E. (1985) Concurrent evolution of nitrogenase genes and 16S rRNA in Rhizobium species and other nitrogen fixing bacteria. Arch Microbiol 142: 342-348.
Jensen, K.I.N., and Yarborough, D.E. (2004) An overview of weed Management in the wild lowbush blueberry-past and present. Small Fruits Rev 3: 229-255.
Kalt, W., Cassidy, A., Howard, L.R., Krikorian, R., Stull, A.J., Tremblay, F., and Zamora-Ros, R. (2019) Recent research on the health benefits of blueberries and their anthocyanins. Adv Nutr, 11: 224-236. https://doi.org/10.1093/advances/nmz065.
Kariman, K., Barker, S.J., and Tibbett, M. (2018) Structural plasticity in root-fungal symbioses: diverse interactions lead to improved plant fitness. PeerJ 6: e6030.
Kerley, S.J., and Read, D.J. (1995) The biology of mycorrhiza in the Ericaceae: XVIII. Chitin degration by Hymenoscyphus ericae and transfer of chitin-nitrogen to the host plant. New Phytol 131: 369-375.
Kielak, A.M., Barreto, C.C., Kowalchuk, G.A., van Veen, J.A., and Kuramae, E.E. (2016) The ecology of Acidobacteria: moving beyond genes and genomes. Front Microbiol 7: 744.
Koljalg, U., Nilsson, R.H., Abarenkov, K., Tedersoo, L., Taylor, A.F., Bahram, M., et al. (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22: 5271-5277.
Kulichevskaya, I.S., Danilova, O.V., Tereshina, V.M., Kevbrin, V.V., and Dedysh, S.N. (2014) Descriptions of Roseiarcus fermentans gen. nov., sp. nov., a bacteriochlorophyll a-containing fermentative bacterium related phylogenetically to alphaproteobacterial methanotrophs, and of the family Roseiarcaceae fam. Nov. Int J Syst Evol Microbiol 64: 2558-2565.
Kyndt, J.A., Montano Salama, D., and Meyer, T.E. (2020) Genome sequence of the Alphaproteobacterium Blastochloris sulfoviridis DSM 729, which requires reduced sulfur as a growth supplement and contains Bacteriochlorophyll b. Microbiol Resour Announc 9: e00313-20. https://doi.org/10.1128/MRA.00313-20.
Lafond, J. (2009) Optimum leaf nutrient concentrations of wild lowbush blueberry in Quebec. Can J Plant Sci 89: 341-347.
Leopold, D.R. (2016) Ericoid fungal diversity: challenges and opportunities for mycorrhizal research. Fungal Ecol 24: 114-123.
Lukešová, T., Kohout, P., Větrovský, T., and Vohník, M. (2015) The potential of dark septate endophytes to form root symbioses with ectomycorrhizal and ericoid mycorrhizal middle European forest plants. PLoS One 10: e0124752.
MAPAQ (2016) Monographie de l'industrie du bleuet sauvage au Québec.
Marcondes de Souza, J., Carrareto Alves, L., and de Mello Varani, A. (2014) The family Bradyrhizobiaceae. In The Prokaryotes, Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., and Thompson, F. (eds). Berlin, Heidelberg: Springer, pp. 135-154.
Martino, E., Morin, E., Grelet, G.A., Kuo, A., Kohler, A., Daghino, S., et al. (2018) Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytol 217: 1213-1229.
Marty, C., Levesque, J.A., Bradley, R.L., Lafond, J., and Pare, M.C. (2019) Contrasting impacts of two weed species on lowbush blueberry fertilizer nitrogen uptake in a commercial field. PLoS One 14: e0215253.
McMurdie, P.J., and Holmes, S. (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8: e61217.
Mendes, R., Garbeva, P., and Raaijmakers, J.M. (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37: 634-663.
Mitchell, D.T., and Gibson, B.R. (2006) Ericoid mycorrhizal association: ability to adapt to a broad range of habitats. Mycologist 20: 2-9.
Mizrahi-Man, O., Davenport, E.R., and Gilad, Y. (2013) Taxonomic classification of bacterial 16S rRNA genes using short sequencing reads: evaluation of effective study designs. PLoS One 8: e53608.
Moore, D., Robson, G.D., and Trinci, A.P.J. (2000) 21st Century Guidebook to Fungi, Cambridge, UK: Cambridge University Press.
Noble, W.S. (2009) How does multiple testing correction work? Nat Biotechnol 27: 1135-1137.
Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D. et al. (2019) vegan: Community Ecology Package.
Parnell, J.J., Berka, R., Young, H.A., Sturino, J.M., Kang, Y., Barnhart, D.M., and DiLeo, M.V. (2016) From the lab to the farm: an industrial perspective of plant beneficial microorganisms. Front Plant Sci 7: 1110.
Pearson, V., and Read, D.J. (1973a) The transport of carbon and phosphorus by the endophyte and the mycorrhiza. New Phytol 72: 1325-1331.
Pearson, V., and Read, D.J. (1973b) The isolation of the endophyte and synthesis of mycorrhizas in aseptic culture. New Phytol 72: 371-379.
Penney, B.G., and McRae, K.B. (2000) Herbicidal weed control and crop-year NPK fertilization improves lowbush blueberry (Vaccinium angustifolium Ait.) production. Can J Plant Sci 80: 351-361.
Perez-Jaramillo, J.E., Mendes, R., and Raaijmakers, J.M. (2016) Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol Biol 90: 635-644.
R Core Team. (2019) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
Ramirez, K.S., Craine, J.M., and Fierer, N. (2012) Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob Chang Biol 18: 1918-1927.
Raymond, R. (1971) In Pédologie de la région de Chicoutimi, Québec: Ministère de l’Agriculture et de la Colonisation, p. 120.
Ruotsalainen, A.L. (2018) Dark Septate Endophytes (DSE) in boreal and subarctic forests. In Endophytes of Forest Trees, Pirttilä, A.M., and Frank, A.C. Berlin, (eds). Germany: Springer International Publishing AG, pp. 105-117.
Saleem, M., Meckes, N., Pervaiz, Z.H., and Traw, M.B. (2017) Microbial interactions in the Phyllosphere increase plant performance under herbivore biotic stress. Front Microbiol 8: 41.
Sietiö, O.M., Tuomivirta, T., Santalahti, M., Kiheri, H., Timonen, S., Sun, H., et al. (2018) Ericoid plant species and Pinus sylvestris shape fungal communities in their roots and surrounding soil. New Phytol 218: 738-751.
Smith, S.E., and Read, D.J. (2008) Mycorrhizal Symbiosis. Great Britain: Academic Press.
Strullu-Derrien, C., Selosse, M.A., Kenrick, P., and Martin, F.M. (2018) The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. New Phytol 220: 1012-1030.
Timonen, S., Sinkko, H., Sun, H., Sietio, O.M., Rinta-Kanto, J.M., Kiheri, H., and Heinonsalo, J. (2017) Ericoid roots and Mycospheres govern plant-specific bacterial communities in boreal Forest humus. Microb Ecol 73: 939-953.
Tindall, B.J., Rossello-Mora, R., Busse, H.J., Ludwig, W., and Kampfer, P. (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60: 249-266.
Toju, H., Tanabe, A.S., Yamamoto, S., and Sato, H. (2012) High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS One 7: e40863.
Trevett, M.F. (1972) A second approximation of leaf analysis standards for lowbush blueberry. Res Life Sci 19: 15-16.
Turner, T.R., James, E.K., and Poole, P.S. (2013) The plant microbiome. Genome Biol 14: 209.
UNITE Community (2017) UNITE general fasta release. Version 01.12.2017. UNITE Community.
van der Heijden, M.G., Martin, F.M., Selosse, M.A., and Sanders, I.R. (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205: 1406-1423.
van Dijk, E.L., Auger, H., Jaszczyszyn, Y., and Thermes, C. (2014) Ten years of next-generation sequencing technology. Trends Genet 30: 418-426.
Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A., and Dufresne, A. (2015) The importance of the microbiome of the plant holobiont. New Phytol 206: 1196-1206.
Vannier, N., Mony, C., Bittebiere, A.K., Michon-Coudouel, S., Biget, M., and Vandenkoornhuyse, P. (2018) A microorganisms' journey between plant generations. Microbiome 6: 79.
Vohník, M., Albrechtova, J., and Vosatka, M. (2005) The inoculation with Oidiodendron maius and Phialocephala fortinii alters phosphorus and nitrogen uptake, foliar C: N ratio and root biomass distribution in rhododendron cv Azurro. Symbiosis 40: 87-96.
Vohník, M., Sadowsky, J.J., Kohout, P., Lhotáková, Z., Nestby, R., and Kolařík, M. (2012) Novel root-fungus symbiosis in Ericaceae: sheathed ericoid mycorrhiza formed by a hitherto undescribed basidiomycete with affinities to Trechisporales. PLoS One 7: e39524.
Vorob'ev, A.V., de Boer, W., Folman, L.B., Bodelier, P.L., Doronina, N.V., Suzina, N.E., et al. (2009) Methylovirgula ligni gen. nov., sp. nov., an obligately acidophilic, facultatively methylotrophic bacterium with a highly divergent mxaF gene. Int J Syst Evol Microbiol 59: 2538-2545.
Wang, Q., Garrity, G.M., Tiedje, J.M., and Cole, J.R. (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73: 5261-5267.
Weiss, M., Waller, F., Zuccaro, A., and Selosse, M.A. (2016) Sebacinales - one thousand and one interactions with land plants. New Phytol 211: 20-40.
Wen, C., Wu, L., Qin, Y., Van Nostrand, J.D., Ning, D., Sun, B., et al. (2017) Evaluation of the reproducibility of amplicon sequencing with Illumina MiSeq platform. PLoS One 12: e0176716.
Wickham, H. (2016) ggplot2: Elegant Graphics for Data Analysis. New York, NY: Springer-Verlag.
Xiao, G., and Berch, S.M. (1995) The ability of known ericoid mycorrhizal fungi to form mycorrhizae with Gaultheria shallon. Mycologia 87: 467-470.
Yarborough, D.E. (2012) Establishment and Management of the Cultivated Lowbush Blueberry (Vaccinium angustifolium). Int J Fruit Sci 12: 14-22.
Yilmaz, P., Parfrey, L.W., Yarza, P., Gerken, J., Pruesse, E., Quast, C., et al. (2014) The SILVA and "all-species living tree project (LTP)" taxonomic frameworks. Nucleic Acids Res 42: D643-D648.
Yurgel, S.N., Douglas, G.M., Dusault, A., Percival, D., and Langille, M.G.I. (2018) Dissecting community structure in wild blueberry root and soil microbiome. Front Microbiol 9: 1187.
Yurgel, S.N., Douglas, G.M., Comeau, A.M., Mammoliti, M., Dusault, A., Percival, D., and Langille, M.G.I. (2017) Variation in bacterial and eukaryotic communities associated with natural and managed wild blueberry habitats. Phytobiomes J 1: 102-113.
Zhao, Y., Gao, Z., Tian, B., Bi, K., Chen, T., Liu, H., et al. (2017) Endosphere microbiome comparison between symptomatic and asymptomatic roots of Brassica napus infected with Plasmodiophora brassicae. PLoS One 12: e0185907.

Auteurs

Simon Morvan (S)

Institut de Recherche en Biologie Végétale, Département de sciences biologiques, Université de Montréal, QC, Canada.

Hacène Meglouli (H)

Institut de Recherche en Biologie Végétale, Département de sciences biologiques, Université de Montréal, QC, Canada.

Anissa Lounès-Hadj Sahraoui (A)

Université du Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), SFR Condorcet FR CNRS 3417, Calais Cedex, France.

Mohamed Hijri (M)

Institut de Recherche en Biologie Végétale, Département de sciences biologiques, Université de Montréal, QC, Canada.
AgroBioSciences, Mohammed VI Polytechnic University (UM6P), Morocco.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Aerosols Humans Decontamination Air Microbiology Masks
Coal Metagenome Phylogeny Bacteria Genome, Bacterial
Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages

Classifications MeSH