Genetic mutation profile of Chinese HER2-positive breast cancers and genetic predictors of responses to Neoadjuvant anti-HER2 therapy.
Adult
Aged
Antineoplastic Combined Chemotherapy Protocols
/ therapeutic use
Asian People
/ genetics
Biomarkers, Tumor
/ genetics
Breast Neoplasms
/ drug therapy
Cohort Studies
Female
High-Throughput Nucleotide Sequencing
/ methods
Humans
Ki-67 Antigen
/ metabolism
Middle Aged
Mutation
Neoadjuvant Therapy
/ methods
Receptor, ErbB-2
/ metabolism
Treatment Outcome
Tumor Suppressor Protein p53
/ genetics
Journal
Breast cancer research and treatment
ISSN: 1573-7217
Titre abrégé: Breast Cancer Res Treat
Pays: Netherlands
ID NLM: 8111104
Informations de publication
Date de publication:
Sep 2020
Sep 2020
Historique:
received:
06
03
2020
accepted:
26
06
2020
pubmed:
9
7
2020
medline:
5
1
2021
entrez:
9
7
2020
Statut:
ppublish
Résumé
Despite the therapeutic success of existing HER2-targeted therapies, tumors respond quite differently to them. This study aimed at figuring out genetic mutation profile of Chinese HER2-positive patients and investigating predictive factors of neoadjuvant anti-HER2 responses. We employed two cohorts. The first cohort was comprised of 181 HER2-positive patients treated at Guangdong Provincial People's Hospital from 2012 to 2018. The second cohort included 40 patients from the first cohort who underwent HER2-targeted neoadjuvant chemotherapy. Genetic mutations were characterized using next-generation sequencing. We employed the most commonly used definition of pathological complete response (pCR)-eradication of tumor from both breast and lymph nodes (ypT0/is ypN0). In Chinese HER2-positive breast cancer patients, TP53 (74.6%), CDK12 (64.6%) and PIK3CA (46.4%) have the highest mutation frequencies. In cohort 2, significant differences were found between pCR and non-pCR groups in terms of the initial Ki67 status, TP53 missense mutations, TP53 LOF mutations, PIK3CA mutations and ROS1 mutations (p = 0.028, 0.019, 0.005, 0.013, 0.049, respectively). Furthermore, TP53 LOF mutations and initial Ki67 status (OR 7.086, 95% CI 1.366-36.749, p = 0.020 and OR 6.007, 95% CI 1.120-32.210, p = 0.036, respectively) were found to be predictive of pCR status. TP53 LOF mutations and initial Ki67 status in HER2-positive breast cancer are predictive of pCR status after HER2-targeted NACT.
Identifiants
pubmed: 32638235
doi: 10.1007/s10549-020-05778-0
pii: 10.1007/s10549-020-05778-0
pmc: PMC7383038
doi:
Substances chimiques
Biomarkers, Tumor
0
Ki-67 Antigen
0
MKI67 protein, human
0
TP53 protein, human
0
Tumor Suppressor Protein p53
0
ERBB2 protein, human
EC 2.7.10.1
Receptor, ErbB-2
EC 2.7.10.1
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
321-332Subventions
Organisme : Guangzhou Municipal Science and Technology Project
ID : 201707010418
Organisme : Guangzhou Municipal Science and Technology Project
ID : 201705-202004
Références
Nature. 2012 May 16;486(7403):400-4
pubmed: 22722201
Int J Oncol. 2006 Jul;29(1):5-24
pubmed: 16773180
Nat Commun. 2016 May 10;7:11479
pubmed: 27161491
J Med Genet. 2008 Aug;45(8):535-8
pubmed: 18511570
Nature. 2016 May 02;534(7605):47-54
pubmed: 27135926
Lancet. 2017 Jun 17;389(10087):2415-2429
pubmed: 27939064
J Clin Oncol. 2011 Sep 1;29(25):3351-7
pubmed: 21788566
Lancet. 2012 Feb 18;379(9816):633-40
pubmed: 22257673
J Clin Oncol. 2010 Jun 1;28(16):2784-95
pubmed: 20404251
Oncogene. 2001 Feb 22;20(8):899-909
pubmed: 11314025
Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):12129-34
pubmed: 17620607
J Clin Oncol. 2013 Nov 1;31(31):3997-4013
pubmed: 24101045
J Clin Oncol. 2015 Apr 20;33(12):1334-9
pubmed: 25559818
Ann Oncol. 2013 Nov;24(11):2786-93
pubmed: 23970015
J Cell Biol. 2019 Nov 4;218(11):3827-3844
pubmed: 31530580
Oncologist. 2015 Sep;20(9):1001-10
pubmed: 26245675
Cell. 2017 Sep 7;170(6):1062-1078
pubmed: 28886379
Cold Spring Harb Perspect Biol. 2010 Feb;2(2):a001107
pubmed: 20182618
Breast Cancer Res Treat. 2012 Apr;132(3):781-91
pubmed: 21373875
Transl Oncol. 2018 Aug;11(4):930-940
pubmed: 29852458
Lancet Oncol. 2011 Jun;12(6):527-39
pubmed: 21570352
Lancet Oncol. 2012 Jan;13(1):25-32
pubmed: 22153890
Hum Mutat. 2007 Jun;28(6):622-9
pubmed: 17311302
N Engl J Med. 2019 Feb 14;380(7):617-628
pubmed: 30516102
Genes Dev. 2012 Jun 15;26(12):1268-86
pubmed: 22713868
Nat Cell Biol. 2007 May;9(5):489-91
pubmed: 17473858
Cancer Cell. 2011 Jul 12;20(1):79-91
pubmed: 21741598
Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10869-74
pubmed: 11553815
Science. 2012 Feb 17;335(6070):823-8
pubmed: 22344438
J Natl Cancer Inst. 2013 Jul 3;105(13):960-7
pubmed: 23739063
Oncotarget. 2016 May 31;7(22):32731-53
pubmed: 27129168
J Clin Oncol. 2016 Feb 20;34(6):542-9
pubmed: 26527775
Lancet. 2014 Jul 12;384(9938):164-72
pubmed: 24529560
Cancer Cell. 2012 Jun 12;21(6):793-806
pubmed: 22698404
Nat Rev Cancer. 2001 Dec;1(3):233-40
pubmed: 11902578
Med Oncol. 2014 Oct;31(10):163
pubmed: 25186065
Ann Transl Med. 2019 Apr;7(8):179
pubmed: 31168460
Cell. 2009 Apr 3;137(1):87-98
pubmed: 19345189
Mol Biol Rep. 2019 Feb;46(1):823-831
pubmed: 30535550
J Clin Invest. 2007 Jul;117(7):1893-901
pubmed: 17607363
Nature. 2012 Apr 18;486(7403):346-52
pubmed: 22522925
Oncotarget. 2016 Oct 18;7(42):67686-67698
pubmed: 27611952