Glucose metabolism links astroglial mitochondria to cannabinoid effects.
Animals
Astrocytes
/ cytology
Cannabinoid Receptor Agonists
/ pharmacology
Cells, Cultured
Dronabinol
/ pharmacology
Electron Transport Complex I
/ chemistry
Energy Metabolism
/ drug effects
Glucose
/ metabolism
Glycolysis
/ drug effects
Humans
Hypoxia-Inducible Factor 1
/ metabolism
Lactic Acid
/ metabolism
Male
Mice
Mitochondria
/ drug effects
Mitochondrial Membranes
/ metabolism
Oxidation-Reduction
Phosphorylation
Reactive Oxygen Species
/ metabolism
Receptor, Cannabinoid, CB1
/ agonists
Social Behavior
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
07 2020
07 2020
Historique:
received:
09
03
2018
accepted:
29
05
2020
pubmed:
10
7
2020
medline:
21
10
2020
entrez:
10
7
2020
Statut:
ppublish
Résumé
Astrocytes take up glucose from the bloodstream to provide energy to the brain, thereby allowing neuronal activity and behavioural responses
Identifiants
pubmed: 32641832
doi: 10.1038/s41586-020-2470-y
pii: 10.1038/s41586-020-2470-y
doi:
Substances chimiques
Cannabinoid Receptor Agonists
0
Hypoxia-Inducible Factor 1
0
Reactive Oxygen Species
0
Receptor, Cannabinoid, CB1
0
Lactic Acid
33X04XA5AT
Dronabinol
7J8897W37S
Electron Transport Complex I
EC 7.1.1.2
NDUFS4 protein, human
EC 7.1.1.2
Glucose
IY9XDZ35W2
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
603-608Subventions
Organisme : NIH HHS
ID : 1R21DA037678-01
Pays : United States
Organisme : European Research Council
Pays : International
Commentaires et corrections
Type : CommentIn
Type : CommentIn
Références
Magistretti, P. J. & Allaman, I. Lactate in the brain: from metabolic end-product to signalling molecule. Nat. Rev. Neurosci. 19, 235–249 (2018).
pubmed: 29515192
Barros, L. F. & Weber, B. CrossTalk proposal: an important astrocyte-to-neuron lactate shuttle couples neuronal activity to glucose utilisation in the brain. J. Physiol. 596, 347–350 (2018).
pubmed: 29292516
pmcid: 5792514
Bolaños, J. P. Bioenergetics and redox adaptations of astrocytes to neuronal activity. J. Neurochem. 139, 115–125 (2016).
pubmed: 26968531
pmcid: 5018236
Suzuki, A. et al. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144, 810–823 (2011).
pubmed: 21376239
pmcid: 3073831
Allen, N. J. & Barres, B. A. Glia — more than just brain glue. Nature 457, 675–677 (2009).
pubmed: 19194443
Hansson, E. & Rönnbäck, L. Astrocytes in neurotransmission. a review. Cell. Mol. Biol. 36, 487–496 (1990).
pubmed: 1963574
Araque, A. et al. Gliotransmitters travel in time and space. Neuron 81, 728–739 (2014).
pubmed: 24559669
pmcid: 4107238
Almeida, A., Almeida, J., Bolaños, J. P. & Moncada, S. Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protection. Proc. Natl Acad. Sci. USA 98, 15294–15299 (2001).
pubmed: 11742096
Lopez-Fabuel, I. et al. Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes. Proc. Natl Acad. Sci. USA 113, 13063–13068 (2016).
pubmed: 27799543
Semenza, G. L., Roth, P. H., Fang, H. M. & Wang, G. L. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem. 269, 23757–23763 (1994).
pubmed: 8089148
Busquets-Garcia, A., Bains, J. & Marsicano, G. CB
pubmed: 28862250
Araque, A., Castillo, P. E., Manzoni, O. J. & Tonini, R. Synaptic functions of endocannabinoid signaling in health and disease. Neuropharmacology 124, 13–24 (2017).
pubmed: 28625718
pmcid: 5662005
Robin, L. M. et al. Astroglial CB
pubmed: 29779943
Bénard, G. et al. Mitochondrial CB
pubmed: 22388959
Hebert-Chatelain, E. et al. A cannabinoid link between mitochondria and memory. Nature 539, 555–559 (2016).
pubmed: 27828947
Mendizabal-Zubiaga, J. et al. Cannabinoid CB
pubmed: 27826249
pmcid: 5078489
Aquila, S. et al. Human sperm anatomy: ultrastructural localization of the cannabinoid1 receptor and a potential role of anandamide in sperm survival and acrosome reaction. Anat. Rec. 293, 298–309 (2010).
Koch, M. et al. Hypothalamic POMC neurons promote cannabinoid-induced feeding. Nature 519, 45–50 (2015).
pubmed: 25707796
pmcid: 4496586
Gutiérrez-Rodríguez, A. et al. Localization of the cannabinoid type-1 receptor in subcellular astrocyte compartments of mutant mouse hippocampus. Glia 66, 1417–1431 (2018).
pubmed: 29480581
Hebert-Chatelain, E. et al. Cannabinoid control of brain bioenergetics: exploring the subcellular localization of the CB
pubmed: 24944910
pmcid: 4060213
Han, J. et al. Acute cannabinoids impair working memory through astroglial CB
pubmed: 22385967
Guaras, A. M. & Enríquez, J. A. Building a beautiful beast: mammalian respiratory complex I. Cell Metab. 25, 4–5 (2017).
pubmed: 28076765
Mimaki, M., Wang, X., McKenzie, M., Thorburn, D. R. & Ryan, M. T. Understanding mitochondrial complex I assembly in health and disease. Biochim. Biophys. Acta 1817, 851–862 (2012).
pubmed: 21924235
De Rasmo, D., Panelli, D., Sardanelli, A. M. & Papa, S. cAMP-dependent protein kinase regulates the mitochondrial import of the nuclear encoded NDUFS4 subunit of complex I. Cell Signal. 20, 989–997 (2008).
pubmed: 18291624
Hammond, S. L., Leek, A. N., Richman, E. H. & Tjalkens, R. B. Cellular selectivity of AAV serotypes for gene delivery in neurons and astrocytes by neonatal intracerebroventricular injection. PLoS ONE 12, e0188830 (2017).
pubmed: 29244806
pmcid: 5731760
Vicente-Gutierrez, C. et al. Astrocytic mitochondrial ROS modulate brain metabolism and mouse behavior. Nat. Metab. 1, 201–211 (2019).
Chandel, N. S. et al. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl Acad. Sci. USA 95, 11715–11720 (1998).
pubmed: 9751731
Patten, D. A. et al. Hypoxia-inducible factor-1 activation in nonhypoxic conditions: the essential role of mitochondrial-derived reactive oxygen species. Mol. Biol. Cell 21, 3247–3257 (2010).
pubmed: 20660157
pmcid: 2938389
Shadel, G. S. & Horvath, T. L. Mitochondrial ROS signaling in organismal homeostasis. Cell 163, 560–569 (2015).
pubmed: 26496603
pmcid: 4634671
Semenza, G. L. Hypoxia-inducible factors: coupling glucose metabolism and redox regulation with induction of the breast cancer stem cell phenotype. EMBO J. 36, 252–259 (2017).
pubmed: 28007895
Semenza, G. L. Dynamic regulation of stem cell specification and maintenance by hypoxia-inducible factors. Mol. Aspects Med. 47–48, 15–23 (2016).
pubmed: 26549347
Almeida, A., Moncada, S. & Bolaños, J. P. Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Nat. Cell Biol. 6, 45–51 (2004).
pubmed: 14688792
Herrero-Mendez, A. et al. The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat. Cell Biol. 11, 747–752 (2009).
pubmed: 19448625
Jimenez-Blasco, D., Santofimia-Castaño, P., Gonzalez, A., Almeida, A. & Bolaños, J. P. Astrocyte NMDA receptors’ activity sustains neuronal survival through a Cdk5–Nrf2 pathway. Cell Death Differ. 22, 1877–1889 (2015).
pubmed: 25909891
pmcid: 4648333
Morland, C. et al. The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1: expression and action in brain. J. Neurosci. Res. 93, 1045–1055 (2015).
pubmed: 25881750
Liu, C. et al. 3,5-Dihydroxybenzoic acid, a specific agonist for hydroxycarboxylic acid 1, inhibits lipolysis in adipocytes. J. Pharmacol. Exp. Ther. 341, 794–801 (2012).
pubmed: 22434674
Pierre, K., Magistretti, P. J. & Pellerin, L. MCT2 is a major neuronal monocarboxylate transporter in the adult mouse brain. J. Cereb. Blood Flow Metab. 22, 586–595 (2002).
pubmed: 11973431
Mazuel, L. et al. A neuronal MCT2 knockdown in the rat somatosensory cortex reduces both the NMR lactate signal and the BOLD response during whisker stimulation. PLoS One 12, e0174990 (2017).
pubmed: 28388627
pmcid: 5384673
Hollis, F. et al. Mitochondrial function in the brain links anxiety with social subordination. Proc. Natl Acad. Sci. USA 112, 15486–15491 (2015).
pubmed: 26621716
Picard, M., McEwen, B. S., Epel, E. S. & Sandi, C. An energetic view of stress: focus on mitochondria. Front. Neuroendocrinol. 49, 72–85 (2018).
pubmed: 29339091
pmcid: 5964020
Melser, S. et al. Functional analysis of mitochondrial CB1 cannabinoid receptors (mtCB1) in the brain. Methods Enzymol. 593, 143–174 (2017).
pubmed: 28750801
Jollé, C., Déglon, N., Pythoud, C., Bouzier-Sore, A. K. & Pellerin, L. Development of AAV2/DJ-based viral vectors to selectively downregulate the expression of neuronal or astrocytic target proteins in the rat central nervous system. Front Mol. Neurosci. 12, 201 (2019).
pubmed: 31481874
pmcid: 6710342
Marsicano, G. et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature 418, 530–534 (2002).
pubmed: 12152079
Puente, N., Bonilla-Del Río, I., Achicallende, S., Nahirney, P. C. & Grandes, P. High-resolution immunoelectron microscopy techniques for revealing distinct subcellular type 1 cannabinoid receptor domains in brain. Bio-protocol 9, e3145 (2019).
De Rasmo, D. et al. Activation of the cAMP cascade in human fibroblast cultures rescues the activity of oxidatively damaged complex I. Free Radic. Biol. Med. 52, 757–764 (2012).
pubmed: 22198267
Acin-Perez, R., Fernandez-Silva, P., Peleato, M. L., Perez-Martos, A. & Enriquez, J. A. Respiratory active mitochondrial supercomplexes. Mol. Cell 32, 529–539 (2008).
pubmed: 19026783
Belousov, V. V. et al. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Methods 3, 281–286 (2006).
pubmed: 16554833
Darley-Usmar, V. M., Rickwood, D. & Wilson, M. T. (eds) Mitochondria: A Practical Approach (IRL, 1987).
King, T. E. in Methods in Enzymology Vol. 10 (eds Estabrook, R. W. & Pullman, M. E.) 216–225 (Academic, 1967).
Wharton, D. C. & Tzagoloff, A. in Methods in Enzymology Vol. 10 (eds Estabrook, R. W. & Pullman, M. E.) 245–250 (Academic, 1967).
Shepherd, D. & Garland, P. B. The kinetic properties of citrate synthase from rat liver mitochondria. Biochem. J. 114, 597–610 (1969).
pubmed: 5820645
pmcid: 1184933
Busquets-Garcia, A. et al. Pregnenolone blocks cannabinoid-induced acute psychotic-like states in mice. Mol. Psychiatry 22, 1594–1603 (2017).
pubmed: 28220044
pmcid: 5447368
Soria-Gómez, E. et al. Habenular CB
pubmed: 26412490
Paxinos, G. & Franklin, K. B. J. The Mouse Brain in Stereotaxic Coordinates (Academic, 2001).
Martin, P. M. & O’Callaghan, J. P. A direct comparison of GFAP immunocytochemistry and GFAP concentration in various regions of ethanol-fixed rat and mouse brain. J. Neurosci. Methods 58, 181–192 (1995).
pubmed: 7475226
Huang, H. et al. Chronic and acute intranasal oxytocin produce divergent social effects in mice. Neuropsychopharmacol. 39, 1102–1114 (2014).