TGF-β regulates Sca-1 expression and plasticity of pre-neoplastic mammary epithelial stem cells.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
09 07 2020
Historique:
received: 18 10 2018
accepted: 15 06 2020
entrez: 11 7 2020
pubmed: 11 7 2020
medline: 22 12 2020
Statut: epublish

Résumé

The epithelial-mesenchymal plasticity, in tight association with stemness, contributes to the mammary gland homeostasis, evolution of early neoplastic lesions and cancer dissemination. Focused on cell surfaceome, we used mouse models of pre-neoplastic mammary epithelial and cancer stem cells to reveal the connection between cell surface markers and distinct cell phenotypes. We mechanistically dissected the TGF-β family-driven regulation of Sca-1, one of the most commonly used adult stem cell markers. We further provided evidence that TGF-β disrupts the lineage commitment and promotes the accumulation of tumor-initiating cells in pre-neoplastic cells.

Identifiants

pubmed: 32647280
doi: 10.1038/s41598-020-67827-4
pii: 10.1038/s41598-020-67827-4
pmc: PMC7347574
doi:

Substances chimiques

Ataxin-1 0
Atxn1 protein, mouse 0
Recombinant Proteins 0
Transforming Growth Factor beta 0
Erbb2 protein, mouse EC 2.7.10.1
Receptor, ErbB-2 EC 2.7.10.1

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

11396

Références

Biteau, B., Hochmuth, C. E. & Jasper, H. Maintaining tissue homeostasis: Dynamic control of somatic stem cell activity. Cell Stem Cell 9, 402–411. https://doi.org/10.1016/j.stem.2011.10.004 (2011).
doi: 10.1016/j.stem.2011.10.004 pubmed: 22056138 pmcid: 3212030
Giraddi, R. R. et al. Single-cell transcriptomes distinguish stem cell state changes and lineage specification programs in early mammary gland development. Cell Rep 24, 1653–1666 e1657. https://doi.org/10.1016/j.celrep.2018.07.025 (2018).
Davis, F. M. et al. Single-cell lineage tracing in the mammary gland reveals stochastic clonal dispersion of stem/progenitor cell progeny. Nat. Commun. 7, 13053. https://doi.org/10.1038/ncomms13053 (2016).
doi: 10.1038/ncomms13053 pubmed: 27779190 pmcid: 5093309
Breindel, J. L. et al. Epigenetic reprogramming of lineage-committed human mammary epithelial cells requires DNMT3A and loss of DOT1L. Stem Cell Rep. 9, 943–955. https://doi.org/10.1016/j.stemcr.2017.06.019 (2017).
doi: 10.1016/j.stemcr.2017.06.019
Friedmann-Morvinski, D. & Verma, I. M. Dedifferentiation and reprogramming: origins of cancer stem cells. EMBO Rep. 15, 244–253. https://doi.org/10.1002/embr.201338254 (2014).
doi: 10.1002/embr.201338254 pubmed: 24531722 pmcid: 3989690
Challen, G. A., Boles, N., Lin, K. K. & Goodell, M. A. Mouse hematopoietic stem cell identification and analysis. Cytometry A 75, 14–24. https://doi.org/10.1002/cyto.a.20674 (2009).
doi: 10.1002/cyto.a.20674 pubmed: 19023891 pmcid: 2640229
Welm, B. E. et al. Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev. Biol. 245, 42–56. https://doi.org/10.1006/dbio.2002.0625 (2002).
doi: 10.1006/dbio.2002.0625 pubmed: 11969254
Mulholland, D. J. et al. Lin-Sca-1+CD49fhigh stem/progenitors are tumor-initiating cells in the Pten-null prostate cancer model. Cancer Res. 69, 8555–8562. https://doi.org/10.1158/0008-5472.CAN-08-4673 (2009).
doi: 10.1158/0008-5472.CAN-08-4673 pubmed: 19887604 pmcid: 2783355
Grange, C., Lanzardo, S., Cavallo, F., Camussi, G. & Bussolati, B. SCA-1 identifies the tumor-initiating cells in mammary tumors of BALB-neuT transgenic mice. Neoplasia 10, 1433–1443. https://doi.org/10.1593/neo.08902 (2008).
doi: 10.1593/neo.08902 pubmed: 19048122 pmcid: 2586694
Ma, X., Ling, K. W. & Dzierzak, E. Cloning of the Ly-6A (Sca-1) gene locus and identification of a 3’ distal fragment responsible for high-level gamma-interferon-induced expression in vitro. Br. J. Haematol. 114, 724–730 (2001).
doi: 10.1046/j.1365-2141.2001.02986.x
Camarata, T. D., Weaver, G. C., Vasilyev, A. & Arnaout, M. A. Negative regulation of TGFbeta signaling by stem cell antigen-1 protects against ischemic acute kidney injury. PLoS ONE 10, e0129561. https://doi.org/10.1371/journal.pone.0129561 (2015).
doi: 10.1371/journal.pone.0129561 pubmed: 26053644 pmcid: 4460127
Upadhyay, G. et al. Stem cell antigen-1 enhances tumorigenicity by disruption of growth differentiation factor-10 (GDF10)-dependent TGF-beta signaling. Proc. Natl. Acad. Sci. USA 108, 7820–7825. https://doi.org/10.1073/pnas.1103441108 (2011).
doi: 10.1073/pnas.1103441108 pubmed: 21518866
Knutson, K. L. et al. Immunoediting of cancers may lead to epithelial to mesenchymal transition. J. Immunol. 177, 1526–1533. https://doi.org/10.4049/jimmunol.177.3.1526 (2006).
doi: 10.4049/jimmunol.177.3.1526 pubmed: 16849459
Penvose, A. & Westerman, K. A. Sca-1 is involved in the adhesion of myosphere cells to alphaVbeta3 integrin. Biol. Open 1, 839–847. https://doi.org/10.1242/bio.20121222 (2012).
doi: 10.1242/bio.20121222 pubmed: 23213478 pmcid: 3507234
Brill, B., Boecher, N., Groner, B. & Shemanko, C. S. A sparing procedure to clear the mouse mammary fat pad of epithelial components for transplantation analysis. Lab. Anim. 42, 104–110. https://doi.org/10.1258/la.2007.06003e (2008).
doi: 10.1258/la.2007.06003e pubmed: 18348772
Remsik, J. et al. Plasticity and intratumoural heterogeneity of cell surface antigen expression in breast cancer. Br. J. Cancer https://doi.org/10.1038/bjc.2017.497 (2018).
doi: 10.1038/bjc.2017.497 pubmed: 29462126 pmcid: 5886127
Thompson, T. C., Southgate, J., Kitchener, G. & Land, H. Multistage carcinogenesis induced by ras and myc oncogenes in a reconstituted organ. Cell 56, 917–930 (1989).
doi: 10.1016/0092-8674(89)90625-9
Shaw, A., Papadopoulos, J., Johnson, C. & Bushman, W. Isolation and characterization of an immortalized mouse urogenital sinus mesenchyme cell line. Prostate 66, 1347–1358. https://doi.org/10.1002/pros.20357 (2006).
doi: 10.1002/pros.20357 pubmed: 16752376 pmcid: 2802279
Liao, C. et al. Mouse prostate cancer cell lines established from primary and post-castration recurrent tumors. Horm Cancer 1, 44–54 (2010).
doi: 10.1007/s12672-009-0005-y
Slabakova, E. et al. Opposite regulation of MDM2 and MDMX expression in acquisition of mesenchymal phenotype in benign and cancer cells. Oncotarget 6, 36156–36171. https://doi.org/10.18632/oncotarget.5392 (2015).
doi: 10.18632/oncotarget.5392 pubmed: 26416355 pmcid: 4742168
Dereeper, A. et al. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36, W465–469. https://doi.org/10.1093/nar/gkn180 (2008).
Kmieciak, M., Knutson, K. L., Dumur, C. I. & Manjili, M. H. HER-2/neu antigen loss and relapse of mammary carcinoma are actively induced by T cell-mediated anti-tumor immune responses. Eur. J. Immunol. 37, 675–685. https://doi.org/10.1002/eji.200636639 (2007).
doi: 10.1002/eji.200636639 pubmed: 17304628 pmcid: 3732067
Deugnier, M. A. et al. Isolation of mouse mammary epithelial progenitor cells with basal characteristics from the Comma-Dbeta cell line. Dev. Biol. 293, 414–425. https://doi.org/10.1016/j.ydbio.2006.02.007 (2006).
doi: 10.1016/j.ydbio.2006.02.007 pubmed: 16545360
Campbell, S. M., Taha, M. M., Medina, D. & Rosen, J. M. A clonal derivative of mammary epithelial cell line COMMA-D retains stem cell characteristics of unique morphological and functional heterogeneity. Exp. Cell Res. 177, 109–121. https://doi.org/10.1016/0014-4827(88)90029-8 (1988).
doi: 10.1016/0014-4827(88)90029-8 pubmed: 2455648
Guo, W. et al. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 148, 1015–1028. https://doi.org/10.1016/j.cell.2012.02.008 (2012).
doi: 10.1016/j.cell.2012.02.008 pubmed: 22385965 pmcid: 3305806
Kouros-Mehr, H., Slorach, E. M., Sternlicht, M. D. & Werb, Z. GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell 127, 1041–1055. https://doi.org/10.1016/j.cell.2006.09.048 (2006).
doi: 10.1016/j.cell.2006.09.048 pubmed: 2646406 pmcid: 2646406
Barcellos-Hoff, M. H. & Ravani, S. A. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res. 60, 1254–1260 (2000).
pubmed: 10728684
Moses, H. & Barcellos-Hoff, M. H. TGF-beta biology in mammary development and breast cancer. Cold Spring Harb. Perspect. Biol. 3, a003277. https://doi.org/10.1101/cshperspect.a003277 (2011).
doi: 10.1101/cshperspect.a003277 pubmed: 20810549 pmcid: 3003461
Bierie, B., Gorska, A. E., Stover, D. G. & Moses, H. L. TGF-beta promotes cell death and suppresses lactation during the second stage of mammary involution. J. Cell Physiol. 219, 57–68. https://doi.org/10.1002/jcp.21646 (2009).
doi: 10.1002/jcp.21646 pubmed: 19086032 pmcid: 3038423
Jerry, D. J., Medina, D. & Butel, J. S. p53 mutations in COMMA-D cells. Vitro Cell Dev. Biol. Anim. 30A, 87–89. https://doi.org/10.1007/bf02631398 (1994).
doi: 10.1007/bf02631398
Dunphy, K. A. et al. Oncogenic transformation of mammary epithelial cells by transforming growth factor beta independent of mammary stem cell regulation. Cancer Cell Int. 13, 74. https://doi.org/10.1186/1475-2867-13-74 (2013).
doi: 10.1186/1475-2867-13-74 pubmed: 23883065 pmcid: 3733955
Long, K., Montano, M. & Pavlath, G. Sca-1 is negatively regulated by TGF-β1 in myogenic cells. FASEB J. 25, 1156–1165 (2011).
doi: 10.1096/fj.10-170308

Auteurs

Ján Remšík (J)

Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic.
Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic.
Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.

Markéta Pícková (M)

Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic.
Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic.
Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.

Ondřej Vacek (O)

Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic.
Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic.
Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.

Radek Fedr (R)

Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic.
Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic.

Lucia Binó (L)

Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic.
Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic.

Aleš Hampl (A)

Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic.
Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.

Karel Souček (K)

Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic. ksoucek@ibp.cz.
Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic. ksoucek@ibp.cz.
Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic. ksoucek@ibp.cz.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH