A programmable sequence of reporters for lineage analysis.


Journal

Nature neuroscience
ISSN: 1546-1726
Titre abrégé: Nat Neurosci
Pays: United States
ID NLM: 9809671

Informations de publication

Date de publication:
12 2020
Historique:
received: 26 07 2019
accepted: 19 06 2020
pubmed: 29 7 2020
medline: 9 2 2021
entrez: 29 7 2020
Statut: ppublish

Résumé

We present CLADES (cell lineage access driven by an edition sequence), a technology for cell lineage studies based on CRISPR-Cas9 techniques. CLADES relies on a system of genetic switches to activate and inactivate reporter genes in a predetermined order. Targeting CLADES to progenitor cells allows the progeny to inherit a sequential cascade of reporters, thereby coupling birth order to reporter expression. This system, which can also be temporally induced by heat shock, enables the temporal resolution of lineage development and can therefore be used to deconstruct an extended cell lineage by tracking the reporters expressed in the progeny. When targeted to the germ line, the same cascade progresses across animal generations, predominantly marking each generation with the corresponding combination of reporters. CLADES therefore offers an innovative strategy for making programmable cascades of genes that can be used for genetic manipulation or to record serial biological events.

Identifiants

pubmed: 32719561
doi: 10.1038/s41593-020-0676-9
pii: 10.1038/s41593-020-0676-9
doi:

Substances chimiques

Heat-Shock Proteins 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1618-1628

Subventions

Organisme : NIH HHS
ID : P40 OD010949
Pays : United States
Organisme : NIH HHS
ID : P40 OD018537
Pays : United States
Organisme : Howard Hughes Medical Institute
Pays : United States

Commentaires et corrections

Type : CommentIn

Références

Klein, S. L. & Moody, S. A. When family history matters: the importance of lineage analyses and fate maps for explaining animal development. Curr. Top. Dev. Biol. 117, 93–112 (2016).
pubmed: 26969974
Moody, S. A. (ed.) Cell Lineage and Fate Determination (Academic Press, 1998).
Buckingham, M. E. & Meilhac, S. M. Tracing cells for tracking cell lineage and clonal behavior. Dev. Cell 21, 394–409 (2011).
pubmed: 21920310
Richier, B. & Salecker, I. Versatile genetic paintbrushes: Brainbow technologies. Wiley Interdiscip. Rev. Dev. Biol. 4, 161–180 (2015).
pubmed: 25491327
Frumkin, D., Wasserstrom, A., Kaplan, S., Feige, U. & Shapiro, E. Genomic variability within an organism exposes its cell lineage tree. PLoS Comput. Biol. 1, e50 (2005).
pubmed: 16261192 pmcid: 1274291
Salipante, S. J. & Horwitz, M. S. Phylogenetic fate mapping. Proc. Natl Acad. Sci. USA 103, 5448–5453 (2006).
pubmed: 16569691 pmcid: 1414797
McKenna, A. et al. Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science 353, aaf7907 (2016).
pubmed: 27229144 pmcid: 4967023
Baron, C. S. & van Oudenaarden, A. Unravelling cellular relationships during development and regeneration using genetic lineage tracing. Nat. Rev. Mol. Cell Biol. 20, 753–765 (2019).
pubmed: 31690888
McKenna, A. & Gagnon, J. A. Recording development with single cell dynamic lineage tracing. Development 146, dev169730 (2019).
pubmed: 31249005 pmcid: 6602349
Yu, H.-H. et al. A complete developmental sequence of a Drosophila neuronal lineage as revealed by Twin-Spot MARCM. PLoS Biol. 8, e1000461 (2010).
pubmed: 20808769 pmcid: 2927434
Garcia-Marques, J. et al. Unlimited genetic switches for cell-type specific manipulation. Neuron 104, 227–238.e7 (2019).
pubmed: 31395429
Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).
pubmed: 22745249 pmcid: 6286148
Lin, F. L., Sperle, K. & Sternberg, N. Model for homologous recombination during transfer of DNA into mouse L cells: role for DNA ends in the recombination process. Mol. Cell. Biol. 4, 1020–1034 (1984).
pubmed: 6330525 pmcid: 368869
Bhargava, R., Onyango, D. O. & Stark, J. M. Regulation of single-strand annealing and its role in genome maintenance. Trends Genet. 32, 566–575 (2016).
pubmed: 27450436 pmcid: 4992407
Briner, A. E. et al. Guide RNA functional modules direct Cas9 activity and orthogonality. Mol. Cell 56, 333–339 (2014).
pubmed: 25373540
Lee, T., Lee, A. & Luo, L. Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. Development 126, 4065–4076 (1999).
pubmed: 10457015
Caygill, E. E. & Brand, A. H. The GAL4 system: a versatile system for the manipulation and analysis of gene expression. Methods Mol. Biol. 1478, 33–52 (2016).
pubmed: 27730574
Baumgardt, M., Karlsson, D., Terriente, J., Díaz-Benjumea, F. J. & Thor, S. Neuronal subtype specification within a lineage by opposing temporal feed-forward loops. Cell 139, 969–982 (2009).
pubmed: 19945380
Lin, S., Kao, C.-F., Yu, H.-H., Huang, Y. & Lee, T. Lineage analysis of Drosophila lateral antennal lobe neurons reveals Notch-dependent binary temporal fate decisions. PLoS Biol. 10, e1001425 (2012).
pubmed: 23185131 pmcid: 3502534
Homem, C. C. F. & Knoblich, J. A. Drosophila neuroblasts: a model for stem cell biology. Development 139, 4297–4310 (2012).
pubmed: 23132240
Gutschner, T., Haemmerle, M., Genovese, G., Draetta, G. F. & Chin, L. Post-translational regulation of Cas9 during G1 enhances homology-directed repair. Cell Rep. 14, 1555–1566 (2016).
pubmed: 26854237
Bajoghli, B., Aghaallaei, N., Heimbucher, T. & Czerny, T. An artificial promoter construct for heat-inducible misexpression during fish embryogenesis. Dev. Biol. 271, 416–430 (2004).
pubmed: 15223344
He, Y. et al. Self-cleaving ribozymes enable the production of guide RNAs from unlimited choices of promoters for CRISPR/Cas9 mediated genome editing. J. Genet. Genomics 44, 469–472 (2017).
pubmed: 28958488 pmcid: 5736383
Rhoads, R. E. & Lamphear, B. J. in Cap-Independent Translation (ed. Sarnow, P.) 131–153 (Springer, 1995).
Chen, D. A discrete transcriptional silencer in the bam gene determines asymmetric division of the Drosophila germline stem cell. Development 130, 1159–1170 (2003).
pubmed: 12571107
White-Cooper, H. Tissue, cell type and stage-specific ectopic gene expression and RNAi induction in the Drosophila testis. Spermatogenesis 2, 11–22 (2012).
pubmed: 22553486 pmcid: 3341242
Markson, J. S. & Elowitz, M. B. Synthetic biology of multicellular systems: new platforms and applications for animal cells and organisms. ACS Synth. Biol. 3, 875–876 (2014).
pubmed: 25524091 pmcid: 4476972
Doudna, J. A. & Charpentier, E. The new frontier of genome engineering with CRISPR–Cas9. Science 346, 1258096 (2014).
pubmed: 25430774
Hatten, M. E. Central nervous system neuronal migration. Annu. Rev. Neurosci. 22, 511–539 (1999).
pubmed: 10202547
Takahashi, T. The cell cycle of the pseudostratified embryonic murine cerebral wall. J. Neurosci. 15, 6046–6057 (1995).
pubmed: 7666188 pmcid: 6577667
Hartenstein, V., Rudloff, E. & Campos -Ortega, J. A. The pattern of proliferation of the neuroblasts in the wild-type embryo of Drosophila melanogaster. Roux Arch. Dev. Biol. 196, 473–485 (1987).
pubmed: 28305704
Costello, A. et al. Leaky expression of the TET-on system hinders control of endogenous miRNA abundance. Biotechnol. J. 14, e1800219 (2019).
pubmed: 29989353
Sugino, K., Marques, J. G., Medina, I. E. & Lee, T. Theoretical modeling on CRISPR-coded cell lineages: efficient encoding and optimal reconstruction. Preprint at https://www.biorxiv.org/content/10.1101/538488v3 (2019).
Li, X. et al. Temporal patterning of Drosophila medulla neuroblasts controls neural fates. Nature 498, 456–462 (2013).
pubmed: 23783517 pmcid: 3701960
Isshiki, T., Pearson, B., Holbrook, S. & Doe, C. Q. Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell 106, 511–521 (2001).
pubmed: 11525736
Wilson, M. E., Scheel, D. & German, M. S. Gene expression cascades in pancreatic development. Mech. Dev. 120, 65–80 (2003).
pubmed: 12490297
Unckless, R. L., Clark, A. G. & Messer, P. W. Evolution of resistance against CRISPR/Cas9 gene drive. Genetics 205, 827–841 (2017).
pubmed: 27941126
Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).
pubmed: 23873081 pmcid: 3969858
Doench, J. G. et al. Rational design of highly active sgRNAs for CRISPR–Cas9–mediated gene inactivation. Nat. Biotechnol. 32, 1262–1267 (2014).
pubmed: 25184501 pmcid: 4262738
Port, F., Chen, H.-M., Lee, T. & Bullock, S. L. Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proc. Natl Acad. Sci. USA 111, E2967–E2976 (2014).
pubmed: 25002478 pmcid: 4115528
Das, G., Henning, D. & Reddy, R. Structure, organization, and transcription of Drosophila U6 small nuclear RNA genes. J. Biol. Chem. 262, 1187–1193 (1987).
pubmed: 3027083
Reese, M. G., Eeckman, F. H., Kulp, D. & Haussler, D. Improved splice site detection in Genie. J. Comput. Biol. 4, 311–323 (1997).
pubmed: 9278062
Mosimann, C. et al. Ubiquitous transgene expression and Cre-based recombination driven by the ubiquitin promoter in zebrafish. Development 138, 169–177 (2011).
pubmed: 21138979 pmcid: 2998170
Kwan, K. M. et al. The Tol2kit: a multisite gateway-based construction kit forTol2 transposon transgenesis constructs. Dev. Dyn. 236, 3088–3099 (2007).
pubmed: 17937395
Groth, A. C. Construction of transgenic Drosophila by using the site-specific integrase from phage C31. Genetics 166, 1775–1782 (2004).
pubmed: 15126397 pmcid: 1470814
Awasaki, T. et al. Making Drosophila lineage–restricted drivers via patterned recombination in neuroblasts. Nat. Neurosci. 17, 631–637 (2014).
pubmed: 24561995
Laissue, P. P. et al. Three-dimensional reconstruction of the antennal lobe in Drosophila melanogaster. J. Comp. Neurol. 405, 543–552 (1999).
pubmed: 10098944

Auteurs

Jorge Garcia-Marques (J)

Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA. garciamarquesj@janelia.hhmi.org.

Isabel Espinosa-Medina (I)

Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.

Kai-Yuan Ku (KY)

Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.

Ching-Po Yang (CP)

Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.

Minoru Koyama (M)

Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.

Hung-Hsiang Yu (HH)

Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.

Tzumin Lee (T)

Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA. leet@janelia.hhmi.org.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH