SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness.
2019-nCoV Vaccine mRNA-1273
Animals
Antibodies, Neutralizing
/ immunology
Betacoronavirus
/ genetics
CD8-Positive T-Lymphocytes
/ immunology
COVID-19
COVID-19 Vaccines
Clinical Trials, Phase III as Topic
Coronavirus Infections
/ genetics
Female
Lung
/ immunology
Mice
Mutation
Nose
/ immunology
Pandemics
/ prevention & control
Pneumonia, Viral
/ immunology
RNA, Messenger
/ genetics
RNA, Viral
/ genetics
SARS-CoV-2
Th1 Cells
/ immunology
Toll-Like Receptor 4
/ agonists
Viral Vaccines
/ chemistry
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
10 2020
10 2020
Historique:
received:
10
06
2020
accepted:
29
07
2020
pubmed:
7
8
2020
medline:
30
10
2020
entrez:
7
8
2020
Statut:
ppublish
Résumé
A vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is needed to control the coronavirus disease 2019 (COVID-19) global pandemic. Structural studies have led to the development of mutations that stabilize Betacoronavirus spike proteins in the prefusion state, improving their expression and increasing immunogenicity
Identifiants
pubmed: 32756549
doi: 10.1038/s41586-020-2622-0
pii: 10.1038/s41586-020-2622-0
pmc: PMC7581537
mid: NIHMS1616529
doi:
Substances chimiques
Antibodies, Neutralizing
0
COVID-19 Vaccines
0
RNA, Messenger
0
RNA, Viral
0
Tlr4 protein, mouse
0
Toll-Like Receptor 4
0
Viral Vaccines
0
2019-nCoV Vaccine mRNA-1273
EPK39PL4R4
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
567-571Subventions
Organisme : NIH HHS
ID : AI149644
Pays : United States
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : NIAID NIH HHS
ID : U01 AI149644
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI127521
Pays : United States
Organisme : NIH HHS
ID : AI100625
Pays : United States
Organisme : CCR NIH HHS
ID : HHSN261200800001C
Pays : United States
Organisme : NIAID NIH HHS
ID : U19 AI100625
Pays : United States
Organisme : NCI NIH HHS
ID : HHSN261200800001E
Pays : United States
Organisme : NIAID NIH HHS
ID : T32 AI007151
Pays : United States
Organisme : Intramural NIH HHS
ID : Z01 AI005030
Pays : United States
Commentaires et corrections
Type : UpdateOf
Références
Pallesen, J. et al. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc. Natl Acad. Sci. USA 114, E7348–E7357 (2017).
doi: 10.1073/pnas.1707304114
Korber, B. et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182, 812–827.e19 (2020).
doi: 10.1016/j.cell.2020.06.043
Dong, E., Du, H. & Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 20, 533–534 (2020).
doi: 10.1016/S1473-3099(20)30120-1
Keni, R., Alexander, A., Nayak, P. G., Mudgal, J. & Nandakumar, K. COVID-19: emergence, spread, possible treatments, and global burden. Front. Public Health 8, 216 (2020).
doi: 10.3389/fpubh.2020.00216
Graham, B. S. Rapid COVID-19 vaccine development. Science 368, 945–946 (2020).
doi: 10.1126/science.abb8923
Graham, B. S., Gilman, M. S. A. & McLellan, J. S. Structure-based vaccine antigen design. Annu. Rev. Med. 70, 91–104 (2019).
doi: 10.1146/annurev-med-121217-094234
McLellan, J. S. et al. Structure of RSV fusion glycoprotein trimer bound to a prefusion-specific neutralizing antibody. Science 340, 1113–1117 (2013).
doi: 10.1126/science.1234914
McLellan, J. S. et al. Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus. Science 342, 592–598 (2013).
doi: 10.1126/science.1243283
Crank, M. C. et al. A proof of concept for structure-based vaccine design targeting RSV in humans. Science 365, 505–509 (2019).
doi: 10.1126/science.aav9033
Gilman, M. S. A. et al. Rapid profiling of RSV antibody repertoires from the memory B cells of naturally infected adult donors. Sci. Immunol. 1, eaaj1879 (2016).
doi: 10.1126/sciimmunol.aaj1879
Walls, A. C. et al. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature 531, 114–117 (2016).
doi: 10.1038/nature16988
Kirchdoerfer, R. N. et al. Pre-fusion structure of a human coronavirus spike protein. Nature 531, 118–121 (2016).
doi: 10.1038/nature17200
Graham, B. S. & Sullivan, N. J. Emerging viral diseases from a vaccinology perspective: preparing for the next pandemic. Nat. Immunol. 19, 20–28 (2018).
doi: 10.1038/s41590-017-0007-9
Graham, B. S. & Corbett, K. S. Prototype pathogen approach for pandemic preparedness: world on fire. J. Clin. Invest. 130, 3348–3349 (2020).
doi: 10.1172/JCI139601
Menachery, V. D. et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat. Med. 21, 1508–1513 (2015).
doi: 10.1038/nm.3985
Menachery, V. D. et al. SARS-like WIV1-CoV poised for human emergence. Proc. Natl Acad. Sci. USA 113, 3048–3053 (2016).
doi: 10.1073/pnas.1517719113
Graham, B. S., Mascola, J. R. & Fauci, A. S. Novel vaccine technologies: essential components of an adequate response to emerging viral diseases. J. Am. Med. Assoc. 319, 1431–1432 (2018).
doi: 10.1001/jama.2018.0345
Dowd, K. A. et al. Rapid development of a DNA vaccine for Zika virus. Science 354, 237–240 (2016).
doi: 10.1126/science.aai9137
Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines—a new era in vaccinology. Nat. Rev. Drug Discov. 17, 261–279 (2018).
doi: 10.1038/nrd.2017.243
Hassett, K. J. et al. Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines. Mol. Ther. Nucleic Acids 15, 1–11 (2019).
doi: 10.1016/j.omtn.2019.01.013
Mauger, D. M. et al. mRNA structure regulates protein expression through changes in functional half-life. Proc. Natl Acad. Sci. USA 116, 24075–24083 (2019).
doi: 10.1073/pnas.1908052116
Cockrell, A. S. et al. A mouse model for MERS coronavirus-induced acute respiratory distress syndrome. Nat. Microbiol. 2, 16226 (2016).
doi: 10.1038/nmicrobiol.2016.226
Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260–1263 (2020).
doi: 10.1126/science.abb2507
Freeman, B. et al. Validation of a SARS-CoV-2 spike protein ELISA for use in contact investigations and serosurveillance. Preprint at https://doi.org/10.1101/2020.04.24.057323 (2020).
Klumpp-Thomas, C. et al. Standardization of enzyme-linked immunosorbent assays for serosurveys of the SARS-CoV-2 pandemic using clinical and at-home blood sampling. Preprint at https://doi.org/10.1101/2020.05.21.20109280 (2020).
Kim, H. W. et al. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am. J. Epidemiol. 89, 422–434 (1969).
doi: 10.1093/oxfordjournals.aje.a120955
Fulginiti, V. A., Eller, J. J., Downie, A. W. & Kempe, C. H. Altered reactivity to measles virus. Atypical measles in children previously immunized with inactivated measles virus vaccines. J. Am. Med. Assoc. 202, 1075–1080 (1967).
doi: 10.1001/jama.1967.03130250057008
Bolles, M. et al. A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. J. Virol. 85, 12201–12215 (2011).
doi: 10.1128/JVI.06048-11
Czub, M., Weingartl, H., Czub, S., He, R. & Cao, J. Evaluation of modified vaccinia virus Ankara based recombinant SARS vaccine in ferrets. Vaccine 23, 2273–2279 (2005).
doi: 10.1016/j.vaccine.2005.01.033
Deming, D. et al. Vaccine efficacy in senescent mice challenged with recombinant SARS-CoV bearing epidemic and zoonotic spike variants. PLoS Med 3, E525 (2006).
doi: 10.1371/journal.pmed.0030525
Hou, Y.J. et al. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell 182, 429–446 (2020).
doi: 10.1016/j.cell.2020.05.042
Dinnon, K. H. et al. A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature https://doi.org/10.1038/s41586-020-2708-8 (2020).
Jackson, L. A. et al. An mRNA vaccine against SARS-CoV-2—preliminary report. N. Engl. J. Med. Moa2022483 (2020).
Nelson, J. et al. Impact of mRNA chemistry and manufacturing process on innate immune activation. Sci. Adv. 6, eaaz6893 (2020).
doi: 10.1126/sciadv.aaz6893
ter Meulen, J. et al. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLoS Med. 3, e237 (2006).
doi: 10.1371/journal.pmed.0030237
John, S. et al. Multi-antigenic human cytomegalovirus mRNA vaccines that elicit potent humoral and cell-mediated immunity. Vaccine 36, 1689–1699 (2018).
doi: 10.1016/j.vaccine.2018.01.029
Bahl, K. et al. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Mol. Ther. 25, 1316–1327 (2017).
doi: 10.1016/j.ymthe.2017.03.035
Vogel, A. B. et al. Self-amplifying RNA vaccines give equivalent protection against influenza to mRNA vaccines but at much lower doses. Mol. Ther. 26, 446–455 (2018).
doi: 10.1016/j.ymthe.2017.11.017
Douglas, M. G., Kocher, J. F., Scobey, T., Baric, R. S. & Cockrell, A. S. Adaptive evolution influences the infectious dose of MERS-CoV necessary to achieve severe respiratory disease. Virology 517, 98–107 (2018).
doi: 10.1016/j.virol.2017.12.006
Scobey, T. et al. Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus. Proc. Natl Acad. Sci. USA 110, 16157–16162 (2013).
doi: 10.1073/pnas.1311542110
Wang, L. et al. Evaluation of candidate vaccine approaches for MERS-CoV. Nat. Commun. 6, 7712 (2015).
doi: 10.1038/ncomms8712
Böttcher, E. et al. Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. J. Virol. 80, 9896–9898 (2006).
doi: 10.1128/JVI.01118-06
Whitt, M. A. Generation of VSV pseudotypes using recombinant ΔG-VSV for studies on virus entry, identification of entry inhibitors, and immune responses to vaccines. J. Virol. Methods 169, 365–374 (2010).
doi: 10.1016/j.jviromet.2010.08.006