SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
10 2020
Historique:
received: 10 06 2020
accepted: 29 07 2020
pubmed: 7 8 2020
medline: 30 10 2020
entrez: 7 8 2020
Statut: ppublish

Résumé

A vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is needed to control the coronavirus disease 2019 (COVID-19) global pandemic. Structural studies have led to the development of mutations that stabilize Betacoronavirus spike proteins in the prefusion state, improving their expression and increasing immunogenicity

Identifiants

pubmed: 32756549
doi: 10.1038/s41586-020-2622-0
pii: 10.1038/s41586-020-2622-0
pmc: PMC7581537
mid: NIHMS1616529
doi:

Substances chimiques

Antibodies, Neutralizing 0
COVID-19 Vaccines 0
RNA, Messenger 0
RNA, Viral 0
Tlr4 protein, mouse 0
Toll-Like Receptor 4 0
Viral Vaccines 0
2019-nCoV Vaccine mRNA-1273 EPK39PL4R4

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

567-571

Subventions

Organisme : NIH HHS
ID : AI149644
Pays : United States
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : NIAID NIH HHS
ID : U01 AI149644
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI127521
Pays : United States
Organisme : NIH HHS
ID : AI100625
Pays : United States
Organisme : CCR NIH HHS
ID : HHSN261200800001C
Pays : United States
Organisme : NIAID NIH HHS
ID : U19 AI100625
Pays : United States
Organisme : NCI NIH HHS
ID : HHSN261200800001E
Pays : United States
Organisme : NIAID NIH HHS
ID : T32 AI007151
Pays : United States
Organisme : Intramural NIH HHS
ID : Z01 AI005030
Pays : United States

Commentaires et corrections

Type : UpdateOf

Références

Pallesen, J. et al. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc. Natl Acad. Sci. USA 114, E7348–E7357 (2017).
doi: 10.1073/pnas.1707304114
Korber, B. et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182, 812–827.e19 (2020).
doi: 10.1016/j.cell.2020.06.043
Dong, E., Du, H. & Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 20, 533–534 (2020).
doi: 10.1016/S1473-3099(20)30120-1
Keni, R., Alexander, A., Nayak, P. G., Mudgal, J. & Nandakumar, K. COVID-19: emergence, spread, possible treatments, and global burden. Front. Public Health 8, 216 (2020).
doi: 10.3389/fpubh.2020.00216
Graham, B. S. Rapid COVID-19 vaccine development. Science 368, 945–946 (2020).
doi: 10.1126/science.abb8923
Graham, B. S., Gilman, M. S. A. & McLellan, J. S. Structure-based vaccine antigen design. Annu. Rev. Med. 70, 91–104 (2019).
doi: 10.1146/annurev-med-121217-094234
McLellan, J. S. et al. Structure of RSV fusion glycoprotein trimer bound to a prefusion-specific neutralizing antibody. Science 340, 1113–1117 (2013).
doi: 10.1126/science.1234914
McLellan, J. S. et al. Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus. Science 342, 592–598 (2013).
doi: 10.1126/science.1243283
Crank, M. C. et al. A proof of concept for structure-based vaccine design targeting RSV in humans. Science 365, 505–509 (2019).
doi: 10.1126/science.aav9033
Gilman, M. S. A. et al. Rapid profiling of RSV antibody repertoires from the memory B cells of naturally infected adult donors. Sci. Immunol. 1, eaaj1879 (2016).
doi: 10.1126/sciimmunol.aaj1879
Walls, A. C. et al. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature 531, 114–117 (2016).
doi: 10.1038/nature16988
Kirchdoerfer, R. N. et al. Pre-fusion structure of a human coronavirus spike protein. Nature 531, 118–121 (2016).
doi: 10.1038/nature17200
Graham, B. S. & Sullivan, N. J. Emerging viral diseases from a vaccinology perspective: preparing for the next pandemic. Nat. Immunol. 19, 20–28 (2018).
doi: 10.1038/s41590-017-0007-9
Graham, B. S. & Corbett, K. S. Prototype pathogen approach for pandemic preparedness: world on fire. J. Clin. Invest. 130, 3348–3349 (2020).
doi: 10.1172/JCI139601
Menachery, V. D. et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat. Med. 21, 1508–1513 (2015).
doi: 10.1038/nm.3985
Menachery, V. D. et al. SARS-like WIV1-CoV poised for human emergence. Proc. Natl Acad. Sci. USA 113, 3048–3053 (2016).
doi: 10.1073/pnas.1517719113
Graham, B. S., Mascola, J. R. & Fauci, A. S. Novel vaccine technologies: essential components of an adequate response to emerging viral diseases. J. Am. Med. Assoc. 319, 1431–1432 (2018).
doi: 10.1001/jama.2018.0345
Dowd, K. A. et al. Rapid development of a DNA vaccine for Zika virus. Science 354, 237–240 (2016).
doi: 10.1126/science.aai9137
Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines—a new era in vaccinology. Nat. Rev. Drug Discov. 17, 261–279 (2018).
doi: 10.1038/nrd.2017.243
Hassett, K. J. et al. Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines. Mol. Ther. Nucleic Acids 15, 1–11 (2019).
doi: 10.1016/j.omtn.2019.01.013
Mauger, D. M. et al. mRNA structure regulates protein expression through changes in functional half-life. Proc. Natl Acad. Sci. USA 116, 24075–24083 (2019).
doi: 10.1073/pnas.1908052116
Cockrell, A. S. et al. A mouse model for MERS coronavirus-induced acute respiratory distress syndrome. Nat. Microbiol. 2, 16226 (2016).
doi: 10.1038/nmicrobiol.2016.226
Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260–1263 (2020).
doi: 10.1126/science.abb2507
Freeman, B. et al. Validation of a SARS-CoV-2 spike protein ELISA for use in contact investigations and serosurveillance. Preprint at  https://doi.org/10.1101/2020.04.24.057323 (2020).
Klumpp-Thomas, C. et al. Standardization of enzyme-linked immunosorbent assays for serosurveys of the SARS-CoV-2 pandemic using clinical and at-home blood sampling. Preprint at https://doi.org/10.1101/2020.05.21.20109280 (2020).
Kim, H. W. et al. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am. J. Epidemiol. 89, 422–434 (1969).
doi: 10.1093/oxfordjournals.aje.a120955
Fulginiti, V. A., Eller, J. J., Downie, A. W. & Kempe, C. H. Altered reactivity to measles virus. Atypical measles in children previously immunized with inactivated measles virus vaccines. J. Am. Med. Assoc. 202, 1075–1080 (1967).
doi: 10.1001/jama.1967.03130250057008
Bolles, M. et al. A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. J. Virol. 85, 12201–12215 (2011).
doi: 10.1128/JVI.06048-11
Czub, M., Weingartl, H., Czub, S., He, R. & Cao, J. Evaluation of modified vaccinia virus Ankara based recombinant SARS vaccine in ferrets. Vaccine 23, 2273–2279 (2005).
doi: 10.1016/j.vaccine.2005.01.033
Deming, D. et al. Vaccine efficacy in senescent mice challenged with recombinant SARS-CoV bearing epidemic and zoonotic spike variants. PLoS Med 3, E525 (2006).
doi: 10.1371/journal.pmed.0030525
Hou, Y.J. et al. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell 182, 429–446 (2020).
doi: 10.1016/j.cell.2020.05.042
Dinnon, K. H. et al. A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature https://doi.org/10.1038/s41586-020-2708-8 (2020).
Jackson, L. A. et al. An mRNA vaccine against SARS-CoV-2—preliminary report. N. Engl. J. Med. Moa2022483 (2020).
Nelson, J. et al. Impact of mRNA chemistry and manufacturing process on innate immune activation. Sci. Adv. 6, eaaz6893 (2020).
doi: 10.1126/sciadv.aaz6893
ter Meulen, J. et al. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLoS Med. 3, e237 (2006).
doi: 10.1371/journal.pmed.0030237
John, S. et al. Multi-antigenic human cytomegalovirus mRNA vaccines that elicit potent humoral and cell-mediated immunity. Vaccine 36, 1689–1699 (2018).
doi: 10.1016/j.vaccine.2018.01.029
Bahl, K. et al. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Mol. Ther. 25, 1316–1327 (2017).
doi: 10.1016/j.ymthe.2017.03.035
Vogel, A. B. et al. Self-amplifying RNA vaccines give equivalent protection against influenza to mRNA vaccines but at much lower doses. Mol. Ther. 26, 446–455 (2018).
doi: 10.1016/j.ymthe.2017.11.017
Douglas, M. G., Kocher, J. F., Scobey, T., Baric, R. S. & Cockrell, A. S. Adaptive evolution influences the infectious dose of MERS-CoV necessary to achieve severe respiratory disease. Virology 517, 98–107 (2018).
doi: 10.1016/j.virol.2017.12.006
Scobey, T. et al. Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus. Proc. Natl Acad. Sci. USA 110, 16157–16162 (2013).
doi: 10.1073/pnas.1311542110
Wang, L. et al. Evaluation of candidate vaccine approaches for MERS-CoV. Nat. Commun. 6, 7712 (2015).
doi: 10.1038/ncomms8712
Böttcher, E. et al. Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. J. Virol. 80, 9896–9898 (2006).
doi: 10.1128/JVI.01118-06
Whitt, M. A. Generation of VSV pseudotypes using recombinant ΔG-VSV for studies on virus entry, identification of entry inhibitors, and immune responses to vaccines. J. Virol. Methods 169, 365–374 (2010).
doi: 10.1016/j.jviromet.2010.08.006

Auteurs

Kizzmekia S Corbett (KS)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Darin K Edwards (DK)

Moderna Inc, Cambridge, MA, USA.

Sarah R Leist (SR)

Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Olubukola M Abiona (OM)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Seyhan Boyoglu-Barnum (S)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Rebecca A Gillespie (RA)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Sunny Himansu (S)

Moderna Inc, Cambridge, MA, USA.

Alexandra Schäfer (A)

Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Cynthia T Ziwawo (CT)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Anthony T DiPiazza (AT)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Kenneth H Dinnon (KH)

Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Sayda M Elbashir (SM)

Moderna Inc, Cambridge, MA, USA.

Christine A Shaw (CA)

Moderna Inc, Cambridge, MA, USA.

Angela Woods (A)

Moderna Inc, Cambridge, MA, USA.

Ethan J Fritch (EJ)

Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

David R Martinez (DR)

Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Kevin W Bock (KW)

National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Mahnaz Minai (M)

National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Bianca M Nagata (BM)

National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Geoffrey B Hutchinson (GB)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Kai Wu (K)

Moderna Inc, Cambridge, MA, USA.

Carole Henry (C)

Moderna Inc, Cambridge, MA, USA.

Kapil Bahl (K)

Moderna Inc, Cambridge, MA, USA.

Dario Garcia-Dominguez (D)

Moderna Inc, Cambridge, MA, USA.

LingZhi Ma (L)

Moderna Inc, Cambridge, MA, USA.

Isabella Renzi (I)

Moderna Inc, Cambridge, MA, USA.

Wing-Pui Kong (WP)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Stephen D Schmidt (SD)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Lingshu Wang (L)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Yi Zhang (Y)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Emily Phung (E)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
Institute for Biomedical Sciences, George Washington University, Washington, DC, USA.

Lauren A Chang (LA)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Rebecca J Loomis (RJ)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Nedim Emil Altaras (NE)

Moderna Inc, Cambridge, MA, USA.

Elisabeth Narayanan (E)

Moderna Inc, Cambridge, MA, USA.

Mihir Metkar (M)

Moderna Inc, Cambridge, MA, USA.

Vlad Presnyak (V)

Moderna Inc, Cambridge, MA, USA.

Cuiping Liu (C)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Mark K Louder (MK)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Wei Shi (W)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Kwanyee Leung (K)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Eun Sung Yang (ES)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Ande West (A)

Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Kendra L Gully (KL)

Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Laura J Stevens (LJ)

Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.

Nianshuang Wang (N)

Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.

Daniel Wrapp (D)

Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.

Nicole A Doria-Rose (NA)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Guillaume Stewart-Jones (G)

Moderna Inc, Cambridge, MA, USA.

Hamilton Bennett (H)

Moderna Inc, Cambridge, MA, USA.

Gabriela S Alvarado (GS)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Martha C Nason (MC)

Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Tracy J Ruckwardt (TJ)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Jason S McLellan (JS)

Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.

Mark R Denison (MR)

Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.

James D Chappell (JD)

Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.

Ian N Moore (IN)

National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Kaitlyn M Morabito (KM)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

John R Mascola (JR)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Ralph S Baric (RS)

Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Andrea Carfi (A)

Moderna Inc, Cambridge, MA, USA. andrea.carfi@modernatx.com.

Barney S Graham (BS)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. bgraham@nih.gov.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH