Rescue of oxytocin response and social behaviour in a mouse model of autism.
Animals
Autistic Disorder
/ metabolism
Cell Adhesion Molecules, Neuronal
/ deficiency
Disease Models, Animal
Eukaryotic Initiation Factor-4E
/ metabolism
Male
Membrane Proteins
/ deficiency
Mice
Mice, Inbred C57BL
Mice, Knockout
Mitogen-Activated Protein Kinases
/ metabolism
Nerve Tissue Proteins
/ deficiency
Neurons
/ drug effects
Oxytocin
/ metabolism
Phosphorylation
/ drug effects
Protein Biosynthesis
/ drug effects
RNA, Messenger
/ genetics
Signal Transduction
/ drug effects
Social Behavior
Ventral Tegmental Area
/ cytology
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
08 2020
08 2020
Historique:
received:
20
05
2019
accepted:
25
05
2020
pubmed:
8
8
2020
medline:
15
9
2020
entrez:
8
8
2020
Statut:
ppublish
Résumé
A fundamental challenge in developing treatments for autism spectrum disorders is the heterogeneity of the condition. More than one hundred genetic mutations confer high risk for autism, with each individual mutation accounting for only a small fraction of cases
Identifiants
pubmed: 32760004
doi: 10.1038/s41586-020-2563-7
pii: 10.1038/s41586-020-2563-7
pmc: PMC7116741
mid: EMS114606
doi:
Substances chimiques
Cell Adhesion Molecules, Neuronal
0
Eukaryotic Initiation Factor-4E
0
Membrane Proteins
0
Nerve Tissue Proteins
0
RNA, Messenger
0
neuroligin 3
0
Oxytocin
50-56-6
Mitogen-Activated Protein Kinases
EC 2.7.11.24
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
252-256Subventions
Organisme : Swiss National Science Foundation
ID : 140944
Pays : Switzerland
Organisme : Swiss National Science Foundation
ID : 160319
Pays : Switzerland
Organisme : European Research Council
Pays : International
Commentaires et corrections
Type : CommentIn
Type : CommentIn
Références
de la Torre-Ubieta, L., Won, H., Stein, J. L. & Geschwind, D. H. Advancing the understanding of autism disease mechanisms through genetics. Nat. Med. 22, 345–361 (2016).
pubmed: 27050589
pmcid: 5072455
doi: 10.1038/nm.4071
O’Roak, B. J. et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485, 246–250 (2012).
pubmed: 22495309
pmcid: 3350576
doi: 10.1038/nature10989
Iossifov, I. et al. De novo gene disruptions in children on the autistic spectrum. Neuron 74, 285–299 (2012).
pubmed: 22542183
pmcid: 3619976
doi: 10.1016/j.neuron.2012.04.009
Yamasue, H., Aran, A. & Berry-Kravis, E. Emerging pharmacological therapies in fragile X syndrome and autism. Curr. Opin. Neurol. 32, 635–640 (2019).
pubmed: 31045620
doi: 10.1097/WCO.0000000000000703
Bolognani, F. et al. A phase 2 clinical trial of a vasopressin V1a receptor antagonist shows improved adaptive behaviors in men with autism spectrum disorder. Sci. Transl. Med. 11, eaat7838 (2019).
pubmed: 31043521
doi: 10.1126/scitranslmed.aat7838
Parker, K. J. et al. A randomized placebo-controlled pilot trial shows that intranasal vasopressin improves social deficits in children with autism. Sci. Transl. Med. 11, eaau7356 (2019).
pubmed: 31043522
pmcid: 6716148
doi: 10.1126/scitranslmed.aau7356
Walum, H. & Young, L. J. The neural mechanisms and circuitry of the pair bond. Nat. Rev. Neurosci. 19, 643–654 (2018).
pubmed: 30301953
pmcid: 6283620
doi: 10.1038/s41583-018-0072-6
Dölen, G., Darvishzadeh, A., Huang, K. W. & Malenka, R. C. Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 501, 179–184 (2013).
pubmed: 24025838
pmcid: 4091761
doi: 10.1038/nature12518
Cataldo, I., Azhari, A. & Esposito, G. A review of oxytocin and arginine-vasopressin receptors and their modulation of autism spectrum disorder. Front. Mol. Neurosci. 11, 27 (2018).
pubmed: 29487501
pmcid: 5816822
doi: 10.3389/fnmol.2018.00027
Ferguson, J. N. et al. Social amnesia in mice lacking the oxytocin gene. Nat. Genet. 25, 284–288 (2000).
pubmed: 10888874
doi: 10.1038/77040
Oettl, L. L. et al. Oxytocin enhances social recognition by modulating cortical control of early olfactory processing. Neuron 90, 609–621 (2016).
pubmed: 27112498
pmcid: 4860033
doi: 10.1016/j.neuron.2016.03.033
Hung, L. W. et al. Gating of social reward by oxytocin in the ventral tegmental area. Science 357, 1406–1411 (2017).
pubmed: 28963257
pmcid: 6214365
doi: 10.1126/science.aan4994
Xiao, L., Priest, M. F., Nasenbeny, J., Lu, T. & Kozorovitskiy, Y. Biased oxytocinergic modulation of midbrain dopamine systems. Neuron 95, 368–384 (2017).
pubmed: 28669546
pmcid: 7881764
doi: 10.1016/j.neuron.2017.06.003
Sgritta, M. et al. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron 101, 246–259 (2019).
pubmed: 30522820
doi: 10.1016/j.neuron.2018.11.018
Peñagarikano, O. et al. Exogenous and evoked oxytocin restores social behavior in the Cntnap2 mouse model of autism. Sci. Transl. Med. 7, 271ra8 (2015).
pubmed: 25609168
pmcid: 4498455
doi: 10.1126/scitranslmed.3010257
Ebert, D. H. & Greenberg, M. E. Activity-dependent neuronal signalling and autism spectrum disorder. Nature 493, 327–337 (2013).
pubmed: 23325215
pmcid: 3576027
doi: 10.1038/nature11860
Sanders, S. J. et al. Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron 70, 863–885 (2011).
pubmed: 21658581
pmcid: 3939065
doi: 10.1016/j.neuron.2011.05.002
Gilman, S. R. et al. Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron 70, 898–907 (2011).
pubmed: 21658583
pmcid: 3607702
doi: 10.1016/j.neuron.2011.05.021
Tanaka, K. F. et al. Flexible Accelerated STOP Tetracycline Operator-knockin (FAST): a versatile and efficient new gene modulating system. Biol. Psychiatry 67, 770–773 (2010).
pubmed: 20163789
pmcid: 2969181
doi: 10.1016/j.biopsych.2009.12.020
Ichtchenko, K., Nguyen, T. & Südhof, T. C. Structures, alternative splicing, and neurexin binding of multiple neuroligins. J. Biol. Chem. 271, 2676–2682 (1996).
pubmed: 8576240
doi: 10.1074/jbc.271.5.2676
Budreck, E. C. & Scheiffele, P. Neuroligin-3 is a neuronal adhesion protein at GABAergic and glutamatergic synapses. Eur. J. Neurosci. 26, 1738–1748 (2007).
pubmed: 17897391
doi: 10.1111/j.1460-9568.2007.05842.x
Chih, B., Afridi, S. K., Clark, L. & Scheiffele, P. Disorder-associated mutations lead to functional inactivation of neuroligins. Hum. Mol. Genet. 13, 1471–1477 (2004).
pubmed: 15150161
doi: 10.1093/hmg/ddh158
Baudouin, S. J. et al. Shared synaptic pathophysiology in syndromic and nonsyndromic rodent models of autism. Science 338, 128–132 (2012).
pubmed: 22983708
doi: 10.1126/science.1224159
Rothwell, P. E. et al. Autism-associated neuroligin-3 mutations commonly impair striatal circuits to boost repetitive behaviors. Cell 158, 198–212 (2014).
pubmed: 24995986
pmcid: 4120877
doi: 10.1016/j.cell.2014.04.045
Tabuchi, K. et al. A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science 318, 71–76 (2007).
pubmed: 17823315
pmcid: 3235367
doi: 10.1126/science.1146221
Radyushkin, K. et al. Neuroligin-3-deficient mice: model of a monogenic heritable form of autism with an olfactory deficit. Genes Brain Behav. 8, 416–425 (2009).
pubmed: 19243448
doi: 10.1111/j.1601-183X.2009.00487.x
Cao, W. et al. Gamma oscillation dysfunction in mPFC leads to social deficits in neuroligin 3 R451C knockin mice. Neuron 97, 1253–1260 (2018).
pubmed: 29503190
doi: 10.1016/j.neuron.2018.02.001
Modi, B. et al. Possible implication of the CA2 hippocampal circuit in social cognition deficits observed in the neuroligin 3 knock-out mouse, a non-syndromic animal model of autism. Front. Psychiatry 10, 513 (2019).
pubmed: 31379628
pmcid: 6659102
doi: 10.3389/fpsyt.2019.00513
Chadman, K. K. et al. Minimal aberrant behavioral phenotypes of neuroligin-3 R451C knockin mice. Autism Res. 1, 147–158 (2008).
pubmed: 19360662
pmcid: 2701211
doi: 10.1002/aur.22
Jaramillo, T. C. et al. Genetic background effects in Neuroligin-3 mutant mice: Minimal behavioral abnormalities on C57 background. Autism Res. 11, 234–244 (2017).
pubmed: 29028156
pmcid: 5825258
doi: 10.1002/aur.1857
Bariselli, S. et al. Role of VTA dopamine neurons and neuroligin 3 in sociability traits related to nonfamiliar conspecific interaction. Nat. Commun. 9, 3173 (2018).
pubmed: 30093665
pmcid: 6085391
doi: 10.1038/s41467-018-05382-3
Hitti, F. L. & Siegelbaum, S. A. The hippocampal CA2 region is essential for social memory. Nature 508, 88–92 (2014).
pubmed: 24572357
pmcid: 4000264
doi: 10.1038/nature13028
Gunaydin, L. A. et al. Natural neural projection dynamics underlying social behavior. Cell 157, 1535–1551 (2014).
pubmed: 24949967
pmcid: 4123133
doi: 10.1016/j.cell.2014.05.017
Xu, J. et al. Neuroligin 3 regulates dendritic outgrowth by modulating Akt/mTOR signaling. Front. Cell. Neurosci. 13, 518 (2019).
pubmed: 31849609
pmcid: 6896717
doi: 10.3389/fncel.2019.00518
Dieterich, D. C. et al. In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons. Nat. Neurosci. 13, 897–905 (2010).
pubmed: 20543841
pmcid: 2920597
doi: 10.1038/nn.2580
Gkogkas, C. G. et al. Autism-related deficits via dysregulated eIF4E-dependent translational control. Nature 493, 371–377 (2013).
pubmed: 23172145
doi: 10.1038/nature11628
Barnes, S. A. et al. Convergence of hippocampal pathophysiology in Syngap
pubmed: 26558778
pmcid: 4642239
doi: 10.1523/JNEUROSCI.1087-15.2015
Auerbach, B. D., Osterweil, E. K. & Bear, M. F. Mutations causing syndromic autism define an axis of synaptic pathophysiology. Nature 480, 63–68 (2011).
pubmed: 22113615
pmcid: 3228874
doi: 10.1038/nature10658
Darnell, J. C. & Klann, E. The translation of translational control by FMRP: therapeutic targets for FXS. Nat. Neurosci. 16, 1530–1536 (2013).
pubmed: 23584741
pmcid: 3999698
doi: 10.1038/nn.3379
Asiminas, A. et al. Sustained correction of associative learning deficits after brief, early treatment in a rat model of Fragile X Syndrome. Sci. Transl. Med. 11, eaao0498 (2019).
pubmed: 31142675
pmcid: 8162683
doi: 10.1126/scitranslmed.aao0498
Gkogkas, C. G. et al. Pharmacogenetic inhibition of eIF4E-dependent Mmp9 mRNA translation reverses fragile X syndrome-like phenotypes. Cell Rep. 9, 1742–1755 (2014).
pubmed: 25466251
pmcid: 4294557
doi: 10.1016/j.celrep.2014.10.064
Richter, J. D., Bassell, G. J. & Klann, E. Dysregulation and restoration of translational homeostasis in fragile X syndrome. Nat. Rev. Neurosci. 16, 595–605 (2015).
pubmed: 26350240
pmcid: 4688896
doi: 10.1038/nrn4001
Bramham, C. R., Jensen, K. B. & Proud, C. G. Tuning specific translation in cancer metastasis and synaptic memory: control at the MNK-eIF4E axis. Trends Biochem. Sci. 41, 847–858 (2016).
pubmed: 27527252
doi: 10.1016/j.tibs.2016.07.008
Yang, H. et al. Optimization of selective mitogen-activated protein kinase interacting kinases 1 and 2 inhibitors for the treatment of blast crisis leukemia. J. Med. Chem. 61, 4348–4369 (2018).
pubmed: 29683667
doi: 10.1021/acs.jmedchem.7b01714
Lavallée-Adam, M., Rauniyar, N., McClatchy, D. B. & Yates, J. R. III. PSEA-Quant: a protein set enrichment analysis on label-free and label-based protein quantification data. J. Proteome Res. 13, 5496–5509 (2014).
pubmed: 25177766
pmcid: 4258137
doi: 10.1021/pr500473n
Ueda, T. et al. Combined deficiency for MAP kinase-interacting kinase 1 and 2 (Mnk1 and Mnk2) delays tumor development. Proc. Natl Acad. Sci. USA 107, 13984–13990 (2010).
pubmed: 20679220
pmcid: 2922567
doi: 10.1073/pnas.1008136107
Xu, Y. et al. Translation control of the immune checkpoint in cancer and its therapeutic targeting. Nat. Med. 25, 301–311 (2019).
pubmed: 30643286
pmcid: 6613562
doi: 10.1038/s41591-018-0321-2
The Dutch-Belgian Fragile X Consortium. Fmr1 knockout mice: a model to study fragile X mental retardation. Cell 78, 23–33 (1994).
El-Brolosy, M. A. et al. Genetic compensation triggered by mutant mRNA degradation. Nature 568, 193–197 (2019).
pubmed: 30944477
pmcid: 6707827
doi: 10.1038/s41586-019-1064-z
Turiault, M. et al. Analysis of dopamine transporter gene expression pattern — generation of DAT-iCre transgenic mice. FEBS J. 274, 3568–3577 (2007).
pubmed: 17565601
doi: 10.1111/j.1742-4658.2007.05886.x
Weigelt, S., Koldewyn, K. & Kanwisher, N. Face identity recognition in autism spectrum disorders: a review of behavioral studies. Neurosci. Biobehav. Rev. 36, 1060–1084 (2012).
pubmed: 22212588
doi: 10.1016/j.neubiorev.2011.12.008
McPartland, J. C., Webb, S. J., Keehn, B. & Dawson, G. Patterns of visual attention to faces and objects in autism spectrum disorder. J. Autism Dev. Disord. 41, 148–157 (2011).
pubmed: 20499148
pmcid: 3074360
doi: 10.1007/s10803-010-1033-8
Dantzer, R., Bluthe, R. M., Koob, G. F. & Le Moal, M. Modulation of social memory in male rats by neurohypophyseal peptides. Psychopharmacology (Berl.) 91, 363–368 (1987).
doi: 10.1007/BF00518192
Mitre, M., Minder, J., Morina, E. X., Chao, M. V. & Froemke, R. C. Oxytocin Modulation of Neural Circuits. Curr. Top. Behav. Neurosci. 35, 31–53 (2018).
pubmed: 28864972
pmcid: 5834368
doi: 10.1007/7854_2017_7
Tom Dieck, S. et al. Metabolic labeling with noncanonical amino acids and visualization by chemoselective fluorescent tagging. Curr. Protoc. Cell Biol. Chapter 7, Unit7.11 (2012).
Bowling, H. et al. BONLAC: A combinatorial proteomic technique to measure stimulus-induced translational profiles in brain slices. Neuropharmacology 100, 76–89 (2016).
pubmed: 26205778
doi: 10.1016/j.neuropharm.2015.07.017
Peterson, A. C., Russell, J. D., Bailey, D. J., Westphall, M. S. & Coon, J. J. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol. Cell. Proteomics 11, 1475–1488 (2012).
pubmed: 22865924
pmcid: 3494192
doi: 10.1074/mcp.O112.020131
Ahrné, E. et al. Evaluation and improvement of quantification accuracy in isobaric mass tag-based protein quantification experiments. J. Proteome Res. 15, 2537–2547 (2016).
pubmed: 27345528
doi: 10.1021/acs.jproteome.6b00066
Wang, Y. et al. Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells. Proteomics 11, 2019–2026 (2011).
pubmed: 21500348
pmcid: 3120047
doi: 10.1002/pmic.201000722
Vizcaíno, J. A. et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44 (D1), D447–D456 (2016).
pubmed: 26527722
doi: 10.1093/nar/gkv1145
Szklarczyk, D. et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47 (D1), D607–D613 (2019).
pubmed: 30476243
doi: 10.1093/nar/gky1131
Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6, e21800 (2011).
pubmed: 21789182
pmcid: 3138752
doi: 10.1371/journal.pone.0021800
DiBenedictis, B. T., Nussbaum, E. R., Cheung, H. K. & Veenema, A. H. Quantitative mapping reveals age and sex differences in vasopressin, but not oxytocin, immunoreactivity in the rat social behavior neural network. J. Comp. Neurol. 525, 2549–2570 (2017).
pubmed: 28340511
pmcid: 6066795
doi: 10.1002/cne.24216