Rescue of oxytocin response and social behaviour in a mouse model of autism.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
08 2020
Historique:
received: 20 05 2019
accepted: 25 05 2020
pubmed: 8 8 2020
medline: 15 9 2020
entrez: 8 8 2020
Statut: ppublish

Résumé

A fundamental challenge in developing treatments for autism spectrum disorders is the heterogeneity of the condition. More than one hundred genetic mutations confer high risk for autism, with each individual mutation accounting for only a small fraction of cases

Identifiants

pubmed: 32760004
doi: 10.1038/s41586-020-2563-7
pii: 10.1038/s41586-020-2563-7
pmc: PMC7116741
mid: EMS114606
doi:

Substances chimiques

Cell Adhesion Molecules, Neuronal 0
Eukaryotic Initiation Factor-4E 0
Membrane Proteins 0
Nerve Tissue Proteins 0
RNA, Messenger 0
neuroligin 3 0
Oxytocin 50-56-6
Mitogen-Activated Protein Kinases EC 2.7.11.24

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

252-256

Subventions

Organisme : Swiss National Science Foundation
ID : 140944
Pays : Switzerland
Organisme : Swiss National Science Foundation
ID : 160319
Pays : Switzerland
Organisme : European Research Council
Pays : International

Commentaires et corrections

Type : CommentIn
Type : CommentIn

Références

de la Torre-Ubieta, L., Won, H., Stein, J. L. & Geschwind, D. H. Advancing the understanding of autism disease mechanisms through genetics. Nat. Med. 22, 345–361 (2016).
pubmed: 27050589 pmcid: 5072455 doi: 10.1038/nm.4071
O’Roak, B. J. et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485, 246–250 (2012).
pubmed: 22495309 pmcid: 3350576 doi: 10.1038/nature10989
Iossifov, I. et al. De novo gene disruptions in children on the autistic spectrum. Neuron 74, 285–299 (2012).
pubmed: 22542183 pmcid: 3619976 doi: 10.1016/j.neuron.2012.04.009
Yamasue, H., Aran, A. & Berry-Kravis, E. Emerging pharmacological therapies in fragile X syndrome and autism. Curr. Opin. Neurol. 32, 635–640 (2019).
pubmed: 31045620 doi: 10.1097/WCO.0000000000000703
Bolognani, F. et al. A phase 2 clinical trial of a vasopressin V1a receptor antagonist shows improved adaptive behaviors in men with autism spectrum disorder. Sci. Transl. Med. 11, eaat7838 (2019).
pubmed: 31043521 doi: 10.1126/scitranslmed.aat7838
Parker, K. J. et al. A randomized placebo-controlled pilot trial shows that intranasal vasopressin improves social deficits in children with autism. Sci. Transl. Med. 11, eaau7356 (2019).
pubmed: 31043522 pmcid: 6716148 doi: 10.1126/scitranslmed.aau7356
Walum, H. & Young, L. J. The neural mechanisms and circuitry of the pair bond. Nat. Rev. Neurosci. 19, 643–654 (2018).
pubmed: 30301953 pmcid: 6283620 doi: 10.1038/s41583-018-0072-6
Dölen, G., Darvishzadeh, A., Huang, K. W. & Malenka, R. C. Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 501, 179–184 (2013).
pubmed: 24025838 pmcid: 4091761 doi: 10.1038/nature12518
Cataldo, I., Azhari, A. & Esposito, G. A review of oxytocin and arginine-vasopressin receptors and their modulation of autism spectrum disorder. Front. Mol. Neurosci. 11, 27 (2018).
pubmed: 29487501 pmcid: 5816822 doi: 10.3389/fnmol.2018.00027
Ferguson, J. N. et al. Social amnesia in mice lacking the oxytocin gene. Nat. Genet. 25, 284–288 (2000).
pubmed: 10888874 doi: 10.1038/77040
Oettl, L. L. et al. Oxytocin enhances social recognition by modulating cortical control of early olfactory processing. Neuron 90, 609–621 (2016).
pubmed: 27112498 pmcid: 4860033 doi: 10.1016/j.neuron.2016.03.033
Hung, L. W. et al. Gating of social reward by oxytocin in the ventral tegmental area. Science 357, 1406–1411 (2017).
pubmed: 28963257 pmcid: 6214365 doi: 10.1126/science.aan4994
Xiao, L., Priest, M. F., Nasenbeny, J., Lu, T. & Kozorovitskiy, Y. Biased oxytocinergic modulation of midbrain dopamine systems. Neuron 95, 368–384 (2017).
pubmed: 28669546 pmcid: 7881764 doi: 10.1016/j.neuron.2017.06.003
Sgritta, M. et al. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron 101, 246–259 (2019).
pubmed: 30522820 doi: 10.1016/j.neuron.2018.11.018
Peñagarikano, O. et al. Exogenous and evoked oxytocin restores social behavior in the Cntnap2 mouse model of autism. Sci. Transl. Med. 7, 271ra8 (2015).
pubmed: 25609168 pmcid: 4498455 doi: 10.1126/scitranslmed.3010257
Ebert, D. H. & Greenberg, M. E. Activity-dependent neuronal signalling and autism spectrum disorder. Nature 493, 327–337 (2013).
pubmed: 23325215 pmcid: 3576027 doi: 10.1038/nature11860
Sanders, S. J. et al. Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron 70, 863–885 (2011).
pubmed: 21658581 pmcid: 3939065 doi: 10.1016/j.neuron.2011.05.002
Gilman, S. R. et al. Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron 70, 898–907 (2011).
pubmed: 21658583 pmcid: 3607702 doi: 10.1016/j.neuron.2011.05.021
Tanaka, K. F. et al. Flexible Accelerated STOP Tetracycline Operator-knockin (FAST): a versatile and efficient new gene modulating system. Biol. Psychiatry 67, 770–773 (2010).
pubmed: 20163789 pmcid: 2969181 doi: 10.1016/j.biopsych.2009.12.020
Ichtchenko, K., Nguyen, T. & Südhof, T. C. Structures, alternative splicing, and neurexin binding of multiple neuroligins. J. Biol. Chem. 271, 2676–2682 (1996).
pubmed: 8576240 doi: 10.1074/jbc.271.5.2676
Budreck, E. C. & Scheiffele, P. Neuroligin-3 is a neuronal adhesion protein at GABAergic and glutamatergic synapses. Eur. J. Neurosci. 26, 1738–1748 (2007).
pubmed: 17897391 doi: 10.1111/j.1460-9568.2007.05842.x
Chih, B., Afridi, S. K., Clark, L. & Scheiffele, P. Disorder-associated mutations lead to functional inactivation of neuroligins. Hum. Mol. Genet. 13, 1471–1477 (2004).
pubmed: 15150161 doi: 10.1093/hmg/ddh158
Baudouin, S. J. et al. Shared synaptic pathophysiology in syndromic and nonsyndromic rodent models of autism. Science 338, 128–132 (2012).
pubmed: 22983708 doi: 10.1126/science.1224159
Rothwell, P. E. et al. Autism-associated neuroligin-3 mutations commonly impair striatal circuits to boost repetitive behaviors. Cell 158, 198–212 (2014).
pubmed: 24995986 pmcid: 4120877 doi: 10.1016/j.cell.2014.04.045
Tabuchi, K. et al. A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science 318, 71–76 (2007).
pubmed: 17823315 pmcid: 3235367 doi: 10.1126/science.1146221
Radyushkin, K. et al. Neuroligin-3-deficient mice: model of a monogenic heritable form of autism with an olfactory deficit. Genes Brain Behav. 8, 416–425 (2009).
pubmed: 19243448 doi: 10.1111/j.1601-183X.2009.00487.x
Cao, W. et al. Gamma oscillation dysfunction in mPFC leads to social deficits in neuroligin 3 R451C knockin mice. Neuron 97, 1253–1260 (2018).
pubmed: 29503190 doi: 10.1016/j.neuron.2018.02.001
Modi, B. et al. Possible implication of the CA2 hippocampal circuit in social cognition deficits observed in the neuroligin 3 knock-out mouse, a non-syndromic animal model of autism. Front. Psychiatry 10, 513 (2019).
pubmed: 31379628 pmcid: 6659102 doi: 10.3389/fpsyt.2019.00513
Chadman, K. K. et al. Minimal aberrant behavioral phenotypes of neuroligin-3 R451C knockin mice. Autism Res. 1, 147–158 (2008).
pubmed: 19360662 pmcid: 2701211 doi: 10.1002/aur.22
Jaramillo, T. C. et al. Genetic background effects in Neuroligin-3 mutant mice: Minimal behavioral abnormalities on C57 background. Autism Res. 11, 234–244 (2017).
pubmed: 29028156 pmcid: 5825258 doi: 10.1002/aur.1857
Bariselli, S. et al. Role of VTA dopamine neurons and neuroligin 3 in sociability traits related to nonfamiliar conspecific interaction. Nat. Commun. 9, 3173 (2018).
pubmed: 30093665 pmcid: 6085391 doi: 10.1038/s41467-018-05382-3
Hitti, F. L. & Siegelbaum, S. A. The hippocampal CA2 region is essential for social memory. Nature 508, 88–92 (2014).
pubmed: 24572357 pmcid: 4000264 doi: 10.1038/nature13028
Gunaydin, L. A. et al. Natural neural projection dynamics underlying social behavior. Cell 157, 1535–1551 (2014).
pubmed: 24949967 pmcid: 4123133 doi: 10.1016/j.cell.2014.05.017
Xu, J. et al. Neuroligin 3 regulates dendritic outgrowth by modulating Akt/mTOR signaling. Front. Cell. Neurosci. 13, 518 (2019).
pubmed: 31849609 pmcid: 6896717 doi: 10.3389/fncel.2019.00518
Dieterich, D. C. et al. In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons. Nat. Neurosci. 13, 897–905 (2010).
pubmed: 20543841 pmcid: 2920597 doi: 10.1038/nn.2580
Gkogkas, C. G. et al. Autism-related deficits via dysregulated eIF4E-dependent translational control. Nature 493, 371–377 (2013).
pubmed: 23172145 doi: 10.1038/nature11628
Barnes, S. A. et al. Convergence of hippocampal pathophysiology in Syngap
pubmed: 26558778 pmcid: 4642239 doi: 10.1523/JNEUROSCI.1087-15.2015
Auerbach, B. D., Osterweil, E. K. & Bear, M. F. Mutations causing syndromic autism define an axis of synaptic pathophysiology. Nature 480, 63–68 (2011).
pubmed: 22113615 pmcid: 3228874 doi: 10.1038/nature10658
Darnell, J. C. & Klann, E. The translation of translational control by FMRP: therapeutic targets for FXS. Nat. Neurosci. 16, 1530–1536 (2013).
pubmed: 23584741 pmcid: 3999698 doi: 10.1038/nn.3379
Asiminas, A. et al. Sustained correction of associative learning deficits after brief, early treatment in a rat model of Fragile X Syndrome. Sci. Transl. Med. 11, eaao0498 (2019).
pubmed: 31142675 pmcid: 8162683 doi: 10.1126/scitranslmed.aao0498
Gkogkas, C. G. et al. Pharmacogenetic inhibition of eIF4E-dependent Mmp9 mRNA translation reverses fragile X syndrome-like phenotypes. Cell Rep. 9, 1742–1755 (2014).
pubmed: 25466251 pmcid: 4294557 doi: 10.1016/j.celrep.2014.10.064
Richter, J. D., Bassell, G. J. & Klann, E. Dysregulation and restoration of translational homeostasis in fragile X syndrome. Nat. Rev. Neurosci. 16, 595–605 (2015).
pubmed: 26350240 pmcid: 4688896 doi: 10.1038/nrn4001
Bramham, C. R., Jensen, K. B. & Proud, C. G. Tuning specific translation in cancer metastasis and synaptic memory: control at the MNK-eIF4E axis. Trends Biochem. Sci. 41, 847–858 (2016).
pubmed: 27527252 doi: 10.1016/j.tibs.2016.07.008
Yang, H. et al. Optimization of selective mitogen-activated protein kinase interacting kinases 1 and 2 inhibitors for the treatment of blast crisis leukemia. J. Med. Chem. 61, 4348–4369 (2018).
pubmed: 29683667 doi: 10.1021/acs.jmedchem.7b01714
Lavallée-Adam, M., Rauniyar, N., McClatchy, D. B. & Yates, J. R. III. PSEA-Quant: a protein set enrichment analysis on label-free and label-based protein quantification data. J. Proteome Res. 13, 5496–5509 (2014).
pubmed: 25177766 pmcid: 4258137 doi: 10.1021/pr500473n
Ueda, T. et al. Combined deficiency for MAP kinase-interacting kinase 1 and 2 (Mnk1 and Mnk2) delays tumor development. Proc. Natl Acad. Sci. USA 107, 13984–13990 (2010).
pubmed: 20679220 pmcid: 2922567 doi: 10.1073/pnas.1008136107
Xu, Y. et al. Translation control of the immune checkpoint in cancer and its therapeutic targeting. Nat. Med. 25, 301–311 (2019).
pubmed: 30643286 pmcid: 6613562 doi: 10.1038/s41591-018-0321-2
The Dutch-Belgian Fragile X Consortium. Fmr1 knockout mice: a model to study fragile X mental retardation. Cell 78, 23–33 (1994).
El-Brolosy, M. A. et al. Genetic compensation triggered by mutant mRNA degradation. Nature 568, 193–197 (2019).
pubmed: 30944477 pmcid: 6707827 doi: 10.1038/s41586-019-1064-z
Turiault, M. et al. Analysis of dopamine transporter gene expression pattern — generation of DAT-iCre transgenic mice. FEBS J. 274, 3568–3577 (2007).
pubmed: 17565601 doi: 10.1111/j.1742-4658.2007.05886.x
Weigelt, S., Koldewyn, K. & Kanwisher, N. Face identity recognition in autism spectrum disorders: a review of behavioral studies. Neurosci. Biobehav. Rev. 36, 1060–1084 (2012).
pubmed: 22212588 doi: 10.1016/j.neubiorev.2011.12.008
McPartland, J. C., Webb, S. J., Keehn, B. & Dawson, G. Patterns of visual attention to faces and objects in autism spectrum disorder. J. Autism Dev. Disord. 41, 148–157 (2011).
pubmed: 20499148 pmcid: 3074360 doi: 10.1007/s10803-010-1033-8
Dantzer, R., Bluthe, R. M., Koob, G. F. & Le Moal, M. Modulation of social memory in male rats by neurohypophyseal peptides. Psychopharmacology (Berl.) 91, 363–368 (1987).
doi: 10.1007/BF00518192
Mitre, M., Minder, J., Morina, E. X., Chao, M. V. & Froemke, R. C. Oxytocin Modulation of Neural Circuits. Curr. Top. Behav. Neurosci. 35, 31–53 (2018).
pubmed: 28864972 pmcid: 5834368 doi: 10.1007/7854_2017_7
Tom Dieck, S. et al. Metabolic labeling with noncanonical amino acids and visualization by chemoselective fluorescent tagging. Curr. Protoc. Cell Biol. Chapter 7, Unit7.11 (2012).
Bowling, H. et al. BONLAC: A combinatorial proteomic technique to measure stimulus-induced translational profiles in brain slices. Neuropharmacology 100, 76–89 (2016).
pubmed: 26205778 doi: 10.1016/j.neuropharm.2015.07.017
Peterson, A. C., Russell, J. D., Bailey, D. J., Westphall, M. S. & Coon, J. J. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol. Cell. Proteomics 11, 1475–1488 (2012).
pubmed: 22865924 pmcid: 3494192 doi: 10.1074/mcp.O112.020131
Ahrné, E. et al. Evaluation and improvement of quantification accuracy in isobaric mass tag-based protein quantification experiments. J. Proteome Res. 15, 2537–2547 (2016).
pubmed: 27345528 doi: 10.1021/acs.jproteome.6b00066
Wang, Y. et al. Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells. Proteomics 11, 2019–2026 (2011).
pubmed: 21500348 pmcid: 3120047 doi: 10.1002/pmic.201000722
Vizcaíno, J. A. et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44 (D1), D447–D456 (2016).
pubmed: 26527722 doi: 10.1093/nar/gkv1145
Szklarczyk, D. et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47 (D1), D607–D613 (2019).
pubmed: 30476243 doi: 10.1093/nar/gky1131
Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6, e21800 (2011).
pubmed: 21789182 pmcid: 3138752 doi: 10.1371/journal.pone.0021800
DiBenedictis, B. T., Nussbaum, E. R., Cheung, H. K. & Veenema, A. H. Quantitative mapping reveals age and sex differences in vasopressin, but not oxytocin, immunoreactivity in the rat social behavior neural network. J. Comp. Neurol. 525, 2549–2570 (2017).
pubmed: 28340511 pmcid: 6066795 doi: 10.1002/cne.24216

Auteurs

Hanna Hörnberg (H)

Biozentrum of the University of Basel, Basel, Switzerland.

Enrique Pérez-Garci (E)

Department of Biomedicine, University of Basel, Basel, Switzerland.

Dietmar Schreiner (D)

Biozentrum of the University of Basel, Basel, Switzerland.

Laetitia Hatstatt-Burklé (L)

Biozentrum of the University of Basel, Basel, Switzerland.

Fulvio Magara (F)

Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland.

Stephane Baudouin (S)

Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK.
Stalicla, Geneva, Switzerland.

Alex Matter (A)

Experimental Drug Development Centre, Singapore, Singapore.

Kassoum Nacro (K)

Experimental Drug Development Centre, Singapore, Singapore.

Eline Pecho-Vrieseling (E)

Department of Biomedicine, University of Basel, Basel, Switzerland.

Peter Scheiffele (P)

Biozentrum of the University of Basel, Basel, Switzerland. peter.scheiffele@unibas.ch.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH