Genotype-phenotype correlations in recessive titinopathies.


Journal

Genetics in medicine : official journal of the American College of Medical Genetics
ISSN: 1530-0366
Titre abrégé: Genet Med
Pays: United States
ID NLM: 9815831

Informations de publication

Date de publication:
12 2020
Historique:
received: 30 04 2020
accepted: 16 07 2020
revised: 15 07 2020
pubmed: 12 8 2020
medline: 28 4 2021
entrez: 12 8 2020
Statut: ppublish

Résumé

High throughput sequencing analysis has facilitated the rapid analysis of the entire titin (TTN) coding sequence. This has resulted in the identification of a growing number of recessive titinopathy patients. The aim of this study was to (1) characterize the causative genetic variants and clinical features of the largest cohort of recessive titinopathy patients reported to date and (2) to evaluate genotype-phenotype correlations in this cohort. We analyzed clinical and genetic data in a cohort of patients with biallelic pathogenic or likely pathogenic TTN variants. The cohort included both previously reported cases (100 patients from 81 unrelated families) and unreported cases (23 patients from 20 unrelated families). Overall, 132 causative variants were identified in cohort members. More than half of the cases had hypotonia at birth or muscle weakness and a delayed motor development within the first 12 months of life (congenital myopathy) with causative variants located along the entire gene. The remaining patients had a distal or proximal phenotype and a childhood or later (noncongenital) onset. All noncongenital cases had at least one pathogenic variant in one of the final three TTN exons (362-364). Our findings suggest a novel association between the location of nonsense variants and the clinical severity of the disease.

Identifiants

pubmed: 32778822
doi: 10.1038/s41436-020-0914-2
pii: S1098-3600(21)00807-8
doi:

Substances chimiques

Connectin 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2029-2040

Subventions

Organisme : Telethon
ID : 22431
Pays : Italy
Organisme : Wellcome Trust
ID : 203141/Z/16/Z
Pays : United Kingdom
Organisme : Medical Research Council
Pays : United Kingdom

Références

Bang ML, Centner T, Fornoff F, et al. The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system. Circ Res. 2001;89:1065–1072.
doi: 10.1161/hh2301.100981
Linke WA, Kulke M, Li H, et al. PEVK domain of titin: an entropic spring with actin-binding properties. J Struct Biol. 2002;137:194–205.
doi: 10.1006/jsbi.2002.4468
Savarese M, Jonson PH, Huovinen S, et al. The complexity of titin splicing pattern in human adult skeletal muscles. Skelet Muscle. 2018;8:11.
doi: 10.1186/s13395-018-0156-z
Bryen SJ, Ewans LJ, Pinner J, et al. Recurrent TTN metatranscript-only c.39974-11T>G splice variant associated with autosomal recessive arthrogryposis multiplex congenita and myopathy. Hum Mutat. 2020;41:403–411.
doi: 10.1002/humu.23938
Savarese M, Sarparanta J, Vihola A, Udd B, Hackman P. Increasing role of titin mutations in neuromuscular disorders. J Neuromuscul Dis. 2016;3:293–308.
doi: 10.3233/JND-160158
Hackman P, Marchand S, Sarparanta J, et al. Truncating mutations in C-terminal titin may cause more severe tibial muscular dystrophy (TMD). Neuromuscul Disord. 2008;18:922–928.
doi: 10.1016/j.nmd.2008.07.010
Hackman P, Vihola A, Haravuori H, et al. Tibial muscular dystrophy is a titinopathy caused by mutations in TTN, the gene encoding the giant skeletal-muscle protein titin. Am J Hum Genet. 2002;71:492–500.
doi: 10.1086/342380
Palmio J, Leonard-Louis S, Sacconi S, et al. Expanding the importance of HMERF titinopathy: new mutations and clinical aspects. J Neurol. 2019;266:680–690.
doi: 10.1007/s00415-019-09187-2
Tasca G, Udd B. Hereditary myopathy with early respiratory failure (HMERF): still rare, but common enough. Neuromuscul Disord. 2018;28:268–276.
doi: 10.1016/j.nmd.2017.12.002
Fernandez-Marmiesse A, Carrascosa-Romero MC, Alfaro Ponce B, et al. Homozygous truncating mutation in prenatally expressed skeletal isoform of TTN gene results in arthrogryposis multiplex congenita and myopathy without cardiac involvement. Neuromuscul Disord. 2017;27:188–192.
doi: 10.1016/j.nmd.2016.11.002
Oates EC, Jones KJ, Donkervoort S, et al. Congenital titinopathy: comprehensive characterization and pathogenic insights. Ann Neurol. 2018;83:1105–1124.
doi: 10.1002/ana.25241
Chervinsky E, Khayat M, Soltsman S, Habiballa H, Elpeleg O, Shalev S. A homozygous TTN gene variant associated with lethal congenital contracture syndrome. Am J Med Genet A. 2018;176:1001–1005.
doi: 10.1002/ajmg.a.38639
Ware JS, Cook SA. Role of titin in cardiomyopathy: from DNA variants to patient stratification. Nat Rev Cardiol. 2018;15:241–252.
doi: 10.1038/nrcardio.2017.190
Savarese M, Maggi L, Vihola A, et al. Interpreting genetic variants in titin in patients with muscle disorders. JAMA Neurol. 2018;75:557–565.
doi: 10.1001/jamaneurol.2017.4899
Savarese M, Di Fruscio G, Mutarelli M, et al. MotorPlex provides accurate variant detection across large muscle genes both in single myopathic patients and in pools of DNA samples. Acta Neuropathol Commun. 2014;2:100.
doi: 10.1186/s40478-014-0100-3
Savarese M, Di Fruscio G, Torella A, et al. The genetic basis of undiagnosed muscular dystrophies and myopathies: Results from 504 patients. Neurology. 2016;87:71–76.
doi: 10.1212/WNL.0000000000002800
Evila A, Arumilli M, Udd B, Hackman P. Targeted next-generation sequencing assay for detection of mutations in primary myopathies. Neuromuscul Disord. 2016;26:7–15.
doi: 10.1016/j.nmd.2015.10.003
Välipakka S, Savarese M, Johari M, et al. Copy number variation analysis increases the diagnostic yield in muscle diseases. Neurology Genetics. 2017;3:e204.
doi: 10.1212/NXG.0000000000000204
Valipakka S, Savarese M, Sagath L, et al. Improving copy number variant detection from sequencing data with a combination of programs and a predictive model. J Mol Diagn. 2020;22:40–49.
doi: 10.1016/j.jmoldx.2019.08.009
Desmet FO, Hamroun D, Lalande M, Collod-Beroud G, Claustres M, Beroud C. Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009;37:e67.
doi: 10.1093/nar/gkp215
Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, et al. Predicting splicing from primary sequence with deep learning. Cell. 2019;176:535–548.
doi: 10.1016/j.cell.2018.12.015
Evila A, Vihola A, Sarparanta J, et al. Atypical phenotypes in titinopathies explained by second titin mutations. Ann Neurol. 2014;75:230–240.
doi: 10.1002/ana.24102
Savarese M, Johari M, Johnson K, et al. Improved criteria for the classification of titin variants in inherited skeletal myopathies. J Neuromuscul Dis. 2020;7:153–166.
doi: 10.3233/JND-190423
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–424.
doi: 10.1038/gim.2015.30
Chauveau C, Bonnemann CG, Julien C, et al. Recessive TTN truncating mutations define novel forms of core myopathy with heart disease. Hum Mol Genet. 2014;23:980–991.
doi: 10.1093/hmg/ddt494
Avila-Polo R, Malfatti E, Lornage X, et al. Loss of sarcomeric scaffolding as a common baseline histopathologic lesion in titin-related myopathies. J Neuropathol Exp Neurol. 2018;77:1101–1114.
doi: 10.1093/jnen/nly095
Evila A, Palmio J, Vihola A, et al. Targeted next-generation sequencing reveals novel TTN mutations causing recessive distal titinopathy. Mol Neurobiol. 2017;54:7212–7223.
doi: 10.1007/s12035-016-0242-3
Peric S, Glumac JN, Topf A, et al. A novel recessive TTN founder variant is a common cause of distal myopathy in the Serbian population. Eur J Hum Genet. 2017;25:572–581.
doi: 10.1038/ejhg.2017.16
Van den Bergh PY, Bouquiaux O, Verellen C, et al. Tibial muscular dystrophy in a Belgian family. Ann Neurol. 2003;54:248–251.
doi: 10.1002/ana.10647
Laddach A, Gautel M, Fraternali F. TITINdb-a computational tool to assess titin’s role as a disease gene. Bioinformatics. 2017;33:3482–3485.
doi: 10.1093/bioinformatics/btx424
De Cid R, Ben Yaou R, Roudaut C, et al. A new titinopathy: childhood-juvenile onset Emery-Dreifuss-like phenotype without cardiomyopathy. Neurology. 2015;85:2126–2135.
doi: 10.1212/WNL.0000000000002200
Ceyhan-Birsoy O, Agrawal PB, Hidalgo C, et al. Recessive truncating titin gene, TTN, mutations presenting as centronuclear myopathy. Neurology. 2013;81:1205–1214.
doi: 10.1212/WNL.0b013e3182a6ca62
Hackman P, Udd B, Bonnemann CG, Ferreiro A, Titinopathy Database C. 219th ENMC International Workshop Titinopathies International database of titin mutations and phenotypes, Heemskerk, The Netherlands, 29 April–1 May 2016. Neuromuscul Disord. 2017;27:396–407.
doi: 10.1016/j.nmd.2017.01.009
Brynnel A, Hernandez Y, Kiss B. et al. Downsizing the molecular spring of the giant protein titin reveals that skeletal muscle titin determines passive stiffness and drives longitudinal hypertrophy. Elife. 2018;7:e40532.
doi: 10.7554/eLife.40532
Gotthardt M, Hammer RE, Hubner N, et al. Conditional expression of mutant M-line titins results in cardiomyopathy with altered sarcomere structure. J Biol Chem. 2003;278:6059–6065.
doi: 10.1074/jbc.M211723200
Weinert S, Bergmann N, Luo X, Erdmann B, Gotthardt M. M line-deficient titin causes cardiac lethality through impaired maturation of the sarcomere. J Cell Biol. 2006;173:559–570.
doi: 10.1083/jcb.200601014
Charton K, Sarparanta J, Vihola A, et al. CAPN3-mediated processing of C-terminal titin replaced by pathological cleavage in titinopathy. Hum Mol Genet. 2015;24:3718–3731.
doi: 10.1093/hmg/ddv116
Schafer S, de Marvao A, Adami E, et al. Titin-truncating variants affect heart function in disease cohorts and the general population. Nat Genet. 2017;49:46–53.
doi: 10.1038/ng.3719
Herman DS, Lam L, Taylor MR, et al. Truncations of titin causing dilated cardiomyopathy. N Engl J Med. 2012;366:619–628.
doi: 10.1056/NEJMoa1110186
Savarese M, Valipakka S, Johari M, Hackman P, Udd B. Is gene-size an issue for the diagnosis of skeletal muscle disorders?. J Neuromuscul Dis. 2020;7:203–216.
doi: 10.3233/JND-190459

Auteurs

Marco Savarese (M)

Folkhälsan Research Center, Helsinki, Finland. marco.savarese@helsinki.fi.
Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland. marco.savarese@helsinki.fi.

Anna Vihola (A)

Folkhälsan Research Center, Helsinki, Finland.
Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland.
Neuromuscular Research Center, Fimlab Laboratories, Tampere University and University Hospital, Tampere, Finland.

Emily C Oates (EC)

School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, Australia.

Rita Barresi (R)

Rare Diseases Advisory Group Service for Neuromuscular Diseases, Muscle Immunoanalysis Unit, Dental Hospital, and The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Translational and Clinical Research Institute, University of Newcastle, Newcastle upon Tyne, UK.

Chiara Fiorillo (C)

Paediatric Neurology and Neuromuscular Disorders Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.

Giorgio Tasca (G)

Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.

Manu Jokela (M)

Neuromuscular Research Center, Tampere University Hospital and Tampere University, Tampere, Finland.

Anna Sarkozy (A)

Dubowitz Neuromuscular Centre, MRC Centre for Neuromuscular Diseases, UCL Great Ormond Street Institute of Child Health, London, UK.

Sushan Luo (S)

Department of Neurology, Huashan Hospital Fudan University, Shanghai, China.

Jordi Díaz-Manera (J)

Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu I Sant Pau, Universidad Autónoma de Barcelona, Barcelona, Spain.
Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.
John Walton Muscular Dystrophy Research Center, University of Newcastle, Newcastle, UK.

Christoffer Ehrstedt (C)

Department of Women and Childrens Health, Section for Paediatrics, Uppsala University, Uppsala, Sweden.
Uppsala University Childrens Hospital, Uppsala, Sweden.

Ricardo Rojas-García (R)

Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu I Sant Pau, Universidad Autónoma de Barcelona, Barcelona, Spain.
Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.

Amets Sáenz (A)

Group of Neuromuscular Diseases, Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain.

Nuria Muelas (N)

Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.
Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.

Fortunato Lonardo (F)

UOSD Genetica Medica, AO Rummo, Benevento, Italy.

Heidi Fodstad (H)

Department of Laboratory Medicine and Pathology, Division of Genetic Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerland.

Talha Qureshi (T)

Folkhälsan Research Center, Helsinki, Finland.
Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland.

Mridul Johari (M)

Folkhälsan Research Center, Helsinki, Finland.
Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland.

Salla Välipakka (S)

Folkhälsan Research Center, Helsinki, Finland.
Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland.

Helena Luque (H)

Folkhälsan Research Center, Helsinki, Finland.
Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland.

Philippe Petiot (P)

Hospices Civils de Lyon, Explorations Fonctionnelles Neurologiques, Hôpital de la Croix Rousse, Lyon, France.

Adolfo López de Munain (AL)

Group of Neuromuscular Diseases, Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain.

Marika Pane (M)

Pediatric Neurology and Nemo Clinical Centre, Fondazione Policlinico Universitario A. Gemelli IRCSS, Università Cattolica del Sacro Cuore, Roma, Italy.

Eugenio Mercuri (E)

Pediatric Neurology and Nemo Clinical Centre, Fondazione Policlinico Universitario A. Gemelli IRCSS, Università Cattolica del Sacro Cuore, Roma, Italy.

Annalaura Torella (A)

Medical Genetics, Department of Biochemistry, Biophysics and General Pathology University of Campania 'Luigi Vanvitelli' Naples Italy, Caserta, Italy.

Vincenzo Nigro (V)

Medical Genetics, Department of Biochemistry, Biophysics and General Pathology University of Campania 'Luigi Vanvitelli' Naples Italy, Caserta, Italy.

Guja Astrea (G)

Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy.

Filippo Maria Santorelli (FM)

Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy.

Claudio Bruno (C)

Paediatric Neurology and Neuromuscular Disorders Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.

Thierry Kuntzer (T)

Department of Neurosciences, Nerve-Muscle Unit, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland.

Isabel Illa (I)

Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu I Sant Pau, Universidad Autónoma de Barcelona, Barcelona, Spain.
Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.

Juan J Vílchez (JJ)

Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.
Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.

Cedric Julien (C)

Centre de Référence de Pathologie Neuromusculaire Nord/Est/Ile-de-France (APHP), Institut de Myologie, GH Pitié-Salpêtrière, Paris, France.

Ana Ferreiro (A)

Centre de Référence de Pathologie Neuromusculaire Nord/Est/Ile-de-France (APHP), Institut de Myologie, GH Pitié-Salpêtrière, Paris, France.
Basic and Translational Myology Lab, UMR8251 BFA, Université de Paris/CNRS, Paris, France.

Alessandro Malandrini (A)

Neurology and Neurometabolic Unit, Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena, Italy.

Chong-Bo Zhao (CB)

Department of Neurology, Huashan Hospital Fudan University, Shanghai, China.

Olivera Casar-Borota (O)

Department of Clinical Pathology, Uppsala University Hospital, Uppsala, Sweden.

Mark Davis (M)

Department of Diagnostic Genomics, Department of Health, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, WA, Australia.

Francesco Muntoni (F)

Dubowitz Neuromuscular Centre, MRC Centre for Neuromuscular Diseases, UCL Great Ormond Street Institute of Child Health, London, UK.
NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK.

Peter Hackman (P)

Folkhälsan Research Center, Helsinki, Finland.
Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland.

Bjarne Udd (B)

Folkhälsan Research Center, Helsinki, Finland.
Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland.
Department of Neurology, Vaasa Central Hospital, Vaasa, Finland.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C

Classifications MeSH