Massively parallel single-cell mitochondrial DNA genotyping and chromatin profiling.
Aged, 80 and over
Cell Differentiation
Cells, Cultured
Clonal Evolution
Clone Cells
DNA, Mitochondrial
/ genetics
Epigenesis, Genetic
Female
Genotyping Techniques
Hematopoiesis
High-Throughput Nucleotide Sequencing
/ methods
Humans
Mitochondria
/ genetics
Mutation
Neoplasms
/ genetics
Sequence Analysis, DNA
Single-Cell Analysis
/ methods
Journal
Nature biotechnology
ISSN: 1546-1696
Titre abrégé: Nat Biotechnol
Pays: United States
ID NLM: 9604648
Informations de publication
Date de publication:
04 2021
04 2021
Historique:
received:
20
01
2020
accepted:
17
07
2020
pubmed:
14
8
2020
medline:
23
4
2021
entrez:
14
8
2020
Statut:
ppublish
Résumé
Natural mitochondrial DNA (mtDNA) mutations enable the inference of clonal relationships among cells. mtDNA can be profiled along with measures of cell state, but has not yet been combined with the massively parallel approaches needed to tackle the complexity of human tissue. Here, we introduce a high-throughput, droplet-based mitochondrial single-cell assay for transposase-accessible chromatin with sequencing (scATAC-seq), a method that combines high-confidence mtDNA mutation calling in thousands of single cells with their concomitant high-quality accessible chromatin profile. This enables the inference of mtDNA heteroplasmy, clonal relationships, cell state and accessible chromatin variation in individual cells. We reveal single-cell variation in heteroplasmy of a pathologic mtDNA variant, which we associate with intra-individual chromatin variability and clonal evolution. We clonally trace thousands of cells from cancers, linking epigenomic variability to subclonal evolution, and infer cellular dynamics of differentiating hematopoietic cells in vitro and in vivo. Taken together, our approach enables the study of cellular population dynamics and clonal properties in vivo.
Identifiants
pubmed: 32788668
doi: 10.1038/s41587-020-0645-6
pii: 10.1038/s41587-020-0645-6
pmc: PMC7878580
mid: NIHMS1613366
doi:
Substances chimiques
DNA, Mitochondrial
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
451-461Subventions
Organisme : NCI NIH HHS
ID : U10 CA180861
Pays : United States
Organisme : Howard Hughes Medical Institute
Pays : United States
Organisme : NHGRI NIH HHS
ID : T32 HG002295
Pays : United States
Organisme : NCI NIH HHS
ID : F31 CA232670
Pays : United States
Organisme : NCI NIH HHS
ID : UG1 CA233338
Pays : United States
Organisme : NCI NIH HHS
ID : T32 CA207021
Pays : United States
Organisme : NCI NIH HHS
ID : P01 CA206978
Pays : United States
Organisme : NHLBI NIH HHS
ID : R33 HL120791
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA208756
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK103794
Pays : United States
Commentaires et corrections
Type : ErratumIn
Références
Stewart, J. B. & Chinnery, P. F. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat. Rev. Genet. 16, 530–542 (2015).
pubmed: 26281784
doi: 10.1038/nrg3966
Shoffner, J. M. & Wallace, D. C. Mitochondrial genetics: principles and practice. Am. J. Hum. Genet. 51, 1179–1186 (1992).
pubmed: 1463005
pmcid: 1682908
Elliott, H. R., Samuels, D. C., Eden, J. A., Relton, C. L. & Chinnery, P. F. Pathogenic mitochondrial DNA mutations are common in the general population. Am. J. Hum. Genet. 83, 254–260 (2008).
pubmed: 18674747
pmcid: 2495064
doi: 10.1016/j.ajhg.2008.07.004
Morris, J. et al. Pervasive within-mitochondrion single-nucleotide variant heteroplasmy as revealed by single-mitochondrion sequencing. Cell Rep. 21, 2706–2713 (2017).
pubmed: 29212019
pmcid: 5771502
doi: 10.1016/j.celrep.2017.11.031
Kang, E. et al. Age-related accumulation of somatic mitochondrial DNA mutations in adult-derived human iPSCs. Cell Stem Cell 18, 625–636 (2016).
pubmed: 27151456
doi: 10.1016/j.stem.2016.02.005
Ludwig, L. S. et al. Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics. Cell 176, 1325–1339.e22 (2019).
pubmed: 30827679
pmcid: 6408267
doi: 10.1016/j.cell.2019.01.022
Xu, J. et al. Single-cell lineage tracing by endogenous mutations enriched in transposase accessible mitochondrial DNA. eLife 8, e45105 (2019).
pubmed: 30958261
pmcid: 6469926
doi: 10.7554/eLife.45105
Lodato, M. A. et al. Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 350, 94–98 (2015).
pubmed: 26430121
pmcid: 4664477
doi: 10.1126/science.aab1785
Lareau, C. A. et al. Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility. Nat. Biotechnol. 37, 916–924 (2019).
pubmed: 31235917
pmcid: 10299900
doi: 10.1038/s41587-019-0147-6
Satpathy, A. T. et al. Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. Nat. Biotechnol. 37, 925–936 (2019).
pubmed: 31375813
pmcid: 7299161
doi: 10.1038/s41587-019-0206-z
Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).
pubmed: 24097267
pmcid: 3959825
doi: 10.1038/nmeth.2688
Corces, M. R. et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017).
pubmed: 28846090
pmcid: 5623106
doi: 10.1038/nmeth.4396
Ross, M. G. et al. Characterizing and measuring bias in sequence data. Genome Biol. 14, R51 (2013).
pubmed: 23718773
pmcid: 4053816
doi: 10.1186/gb-2013-14-5-r51
Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).
pmcid: 4530010
doi: 10.1038/nature14248
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
doi: 10.1038/nature11247
Green, B., Bouchier, C., Fairhead, C., Craig, N. L. & Cormack, B. P. Insertion site preference of Mu, Tn5, and Tn7 transposons. Mob. DNA 3, 3 (2012).
pubmed: 22313799
pmcid: 3292447
doi: 10.1186/1759-8753-3-3
Dames, S. et al. The development of next-generation sequencing assays for the mitochondrial genome and 108 nuclear genes associated with mitochondrial disorders. J. Mol. Diagn. 15, 526–534 (2013).
pubmed: 23665194
doi: 10.1016/j.jmoldx.2013.03.005
Wallace, D. C. & Chalkia, D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb. Perspect. Biol. 5, a021220 (2013).
pubmed: 24186072
pmcid: 3809581
doi: 10.1101/cshperspect.a021220
Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).
pubmed: 26083756
pmcid: 4685948
doi: 10.1038/nature14590
Lee, J. H. et al. Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat. Protoc. 10, 442–458 (2015).
pubmed: 25675209
pmcid: 4327781
doi: 10.1038/nprot.2014.191
Wu, S.-P. et al. Increased COUP-TFII expression in adult hearts induces mitochondrial dysfunction resulting in heart failure. Nat. Commun. 6, 8245 (2015).
pubmed: 26356605
doi: 10.1038/ncomms9245
Zunino, R., Schauss, A., Rippstein, P., Andrade-Navarro, M. & McBride, H. M. The SUMO protease SENP5 is required to maintain mitochondrial morphology and function. J. Cell Sci. 120, 1178–1188 (2007).
pubmed: 17341580
doi: 10.1242/jcs.03418
Powell, C. A. et al. TRMT5 mutations cause a defect in post-transcriptional modification of mitochondrial tRNA associated with multiple respiratory-chain deficiencies. Am. J. Hum. Genet. 97, 319–328 (2015).
pubmed: 26189817
pmcid: 4573257
doi: 10.1016/j.ajhg.2015.06.011
Kugeratski, F. G. et al. Hypoxic cancer–associated fibroblasts increase NCBP2-AS2/HIAR to promote endothelial sprouting through enhanced VEGF signaling. Sci. Signal. 12, eaan8247 (2019).
pubmed: 30723174
pmcid: 6794160
doi: 10.1126/scisignal.aan8247
Brusco, J. & Haas, K. Interactions between mitochondria and the transcription factor myocyte enhancer factor 2 (MEF2) regulate neuronal structural and functional plasticity and metaplasticity. J. Physiol. 593, 3471–3481 (2015).
pubmed: 25581818
pmcid: 4560579
doi: 10.1113/jphysiol.2014.282459
Lott, M. T. et al. mtDNA variation and analysis using mitomap and mitomaster. Curr. Protoc. Bioinformatics 44, 1.23.1–26 (2013).
pubmed: 25489354
doi: 10.1002/0471250953.bi0123s44
Bohrson, C. L. et al. Linked-read analysis identifies mutations in single-cell DNA-sequencing data. Nat. Genet. 51, 749–754 (2019).
pubmed: 30886424
pmcid: 6900933
doi: 10.1038/s41588-019-0366-2
Zafar, H., Wang, Y., Nakhleh, L., Navin, N. & Chen, K. Monovar: single-nucleotide variant detection in single cells. Nat. Methods 13, 505–507 (2016).
pubmed: 27088313
pmcid: 4887298
doi: 10.1038/nmeth.3835
Roos-Weil, D. et al. Mutational and cytogenetic analyses of 188 CLL patients with trisomy 12: a retrospective study from the French Innovative Leukemia Organization (FILO) working group. Genes Chromosomes Cancer 57, 533–540 (2018).
pubmed: 30203893
doi: 10.1002/gcc.22650
Izumi, D. et al. TIAM1 promotes chemoresistance and tumor invasiveness in colorectal cancer. Cell Death Dis. 10, 267 (2019).
pubmed: 30890693
pmcid: 6425043
doi: 10.1038/s41419-019-1493-5
Hofbauer, S. W. et al. Tiam1/Rac1 signals contribute to the proliferation and chemoresistance, but not motility, of chronic lymphocytic leukemia cells. Blood 123, 2181–2188 (2014).
pubmed: 24501217
doi: 10.1182/blood-2013-08-523563
Damm, F. et al. Acquired initiating mutations in early hematopoietic cells of CLL patients. Cancer Discov. 4, 1088–1101 (2014).
pubmed: 24920063
doi: 10.1158/2159-8290.CD-14-0104
Kikushige, Y. et al. Self-renewing hematopoietic stem cell is the primary target in pathogenesis of human chronic lymphocytic leukemia. Cancer Cell 20, 246–259 (2011).
pubmed: 21840488
doi: 10.1016/j.ccr.2011.06.029
Alizadeh, A. A. & Majeti, R. Surprise! HSC are aberrant in chronic lymphocytic leukemia. Cancer Cell 20, 135–136 (2011).
pubmed: 21840478
doi: 10.1016/j.ccr.2011.08.001
Lee-Six, H. et al. Population dynamics of normal human blood inferred from somatic mutations. Nature 561, 473–478 (2018).
pubmed: 30185910
pmcid: 6163040
doi: 10.1038/s41586-018-0497-0
Osorio, F. G. et al. Somatic mutations reveal lineage relationships and age-related mutagenesis in human hematopoiesis. Cell Rep. 25, 2308–2316.e4 (2018).
pubmed: 30485801
pmcid: 6289083
doi: 10.1016/j.celrep.2018.11.014
Granja, J. M. et al. Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia. Nat. Biotechnol. 37, 1458–1465 (2019).
pubmed: 31792411
pmcid: 7258684
doi: 10.1038/s41587-019-0332-7
Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat. Methods 14, 975–978 (2017).
pubmed: 28825706
pmcid: 5623146
doi: 10.1038/nmeth.4401
Buenrostro, J. D. et al. Integrated single-cell analysis maps the continuous regulatory landscape of human hematopoietic differentiation. Cell 173, 1535–1548.e16 (2018).
pubmed: 29706549
pmcid: 5989727
doi: 10.1016/j.cell.2018.03.074
Cusanovich, D. A. et al. A single-cell atlas of in vivo mammalian chromatin accessibility. Cell 174, 1309–1324.e18 (2018).
pubmed: 30078704
pmcid: 6158300
doi: 10.1016/j.cell.2018.06.052
Pliner, H. A. et al. Cicero predicts cis-regulatory DNA interactions from single-cell chromatin accessibility data. Mol. Cell 71, 858–871.e8 (2018).
pubmed: 30078726
pmcid: 6582963
doi: 10.1016/j.molcel.2018.06.044
Choi, J. et al. Haemopedia RNA-seq: a database of gene expression during haematopoiesis in mice and humans. Nucleic Acids Res. 47, D780–D785 (2019).
pubmed: 30395284
doi: 10.1093/nar/gky1020
Jovanovic, M. et al. Immunogenetics. Dynamic profiling of the protein life cycle in response to pathogens. Science 347, 1259038 (2015).
pubmed: 25745177
pmcid: 4506746
doi: 10.1126/science.1259038
Ju, Y. S. et al. Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. eLife 3, e02935 (2014).
pubmed: 25271376
pmcid: 4371858
doi: 10.7554/eLife.02935
Lareau, C. A., Ludwig, L. S. & Sankaran, V. G. Longitudinal assessment of clonal mosaicism in human hematopoiesis via mitochondrial mutation tracking. Blood Adv. 3, 4161–4165 (2019).
pubmed: 31841597
pmcid: 6929387
doi: 10.1182/bloodadvances.2019001196
Rodriguez-Fraticelli, A. E. et al. Clonal analysis of lineage fate in native haematopoiesis. Nature 553, 212–216 (2018).
pubmed: 29323290
pmcid: 5884107
doi: 10.1038/nature25168
Sun, J. et al. Clonal dynamics of native haematopoiesis. Nature 514, 322–327 (2014).
pubmed: 25296256
pmcid: 4408613
doi: 10.1038/nature13824
Pei, W. et al. Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. Nature 548, 456–460 (2017).
pubmed: 28813413
pmcid: 5905670
doi: 10.1038/nature23653
Biasco, L. et al. In vivo tracking of human hematopoiesis reveals patterns of clonal dynamics during early and steady-state reconstitution phases. Cell Stem Cell 19, 107–119 (2016).
pubmed: 27237736
pmcid: 4942697
doi: 10.1016/j.stem.2016.04.016
Scala, S. et al. Dynamics of genetically engineered hematopoietic stem and progenitor cells after autologous transplantation in humans. Nat. Med. 24, 1683–1690 (2018).
pubmed: 30275570
doi: 10.1038/s41591-018-0195-3
Nam, A. S. et al. Somatic mutations and cell identity linked by genotyping of transcriptomes. Nature 571, 355–360 (2019).
pubmed: 31270458
pmcid: 6782071
doi: 10.1038/s41586-019-1367-0
Walker, M. A. et al. Purifying selection against pathogenic mitochondrial DNA in human T cells. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2001265 (2020).
Corral-Debrinski, M. et al. Marked changes in mitochondrial DNA deletion levels in Alzheimer brains. Genomics 23, 471–476 (1994).
pubmed: 7835898
doi: 10.1006/geno.1994.1525
Bender, A. et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat. Genet. 38, 515–517 (2006).
pubmed: 16604074
doi: 10.1038/ng1769
Lee, S. R. & Han, J. Mitochondrial mutations in cardiac disorders. Adv. Exp. Med. Biol. 982, 81–111 (2017).
pubmed: 28551783
doi: 10.1007/978-3-319-55330-6_5
Triska, P. et al. Landscape of germline and somatic mitochondrial DNA mutations in pediatric malignancies. Cancer Res. 79, 7 (2019).
doi: 10.1158/0008-5472.CAN-18-2220
Sun, N., Youle, R. J. & Finkel, T. The mitochondrial basis of aging. Mol. Cell 61, 654–666 (2016).
pubmed: 26942670
pmcid: 4779179
doi: 10.1016/j.molcel.2016.01.028
Hu, J. et al. Isolation and functional characterization of human erythroblasts at distinct stages: implications for understanding of normal and disordered erythropoiesis in vivo. Blood 121, 3246–3253 (2013).
pubmed: 23422750
pmcid: 3630836
doi: 10.1182/blood-2013-01-476390
Giani, F. C. et al. Targeted application of human genetic variation can improve red blood cell production from stem cells. Cell Stem Cell 18, 73–78 (2016).
pubmed: 26607381
doi: 10.1016/j.stem.2015.09.015
Huang, W., Li, L., Myers, J. R. & Marth, G. T. ART: a next-generation sequencing read simulator. Bioinformatics 28, 593–594 (2012).
pubmed: 22199392
doi: 10.1093/bioinformatics/btr708
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278
pmcid: 2832824
doi: 10.1093/bioinformatics/btq033
Lareau, C. A., Ma, S., Duarte, F. M. & Buenrostro, J. D. Inference and effects of barcode multiplets in droplet-based single-cell assays. Nat. Commun. 11, 866 (2020).
pubmed: 32054859
pmcid: 7018801
doi: 10.1038/s41467-020-14667-5
Lander, E. S. & Waterman, M. S. Genomic mapping by fingerprinting random clones: a mathematical analysis. Genomics 2, 231–239 (1988).
pubmed: 3294162
doi: 10.1016/0888-7543(88)90007-9
Chen, F., Tillberg, P. W. & Boyden, E. S. Optical imaging. Expansion microscopy. Science 347, 543–548 (2015).
pubmed: 25592419
pmcid: 4312537
doi: 10.1126/science.1260088
van Dekken, H., Pinkel, D., Mullikin, J. & Gray, J. W. Enzymatic production of single-stranded DNA as a target for fluorescence in situ hybridization. Chromosoma 97, 1–5 (1988).
pubmed: 3191791
doi: 10.1007/BF00331788
Larsson, C. et al. In situ genotyping individual DNA molecules by target-primed rolling-circle amplification of padlock probes. Nat. Methods 1, 227–232 (2004).
pubmed: 15782198
doi: 10.1038/nmeth723
Schwartz, S., Oren, R. & Ast, G. Detection and removal of biases in the analysis of next-generation sequencing reads. PLoS ONE 6, e16685 (2011).
pubmed: 21304912
pmcid: 3031631
doi: 10.1371/journal.pone.0016685
Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).
pubmed: 21903627
pmcid: 3198575
doi: 10.1093/bioinformatics/btr509
Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. Preprint at arXiv https://arxiv.org/abs/1207.3907 (2012).
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).
pubmed: 31178118
pmcid: 6687398
doi: 10.1016/j.cell.2019.05.031
Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2019).
doi: 10.1038/nbt.4314