Cardiac and renal function interactions in heart failure with reduced ejection fraction: A mathematical modeling analysis.


Journal

PLoS computational biology
ISSN: 1553-7358
Titre abrégé: PLoS Comput Biol
Pays: United States
ID NLM: 101238922

Informations de publication

Date de publication:
08 2020
Historique:
received: 20 03 2020
accepted: 18 06 2020
revised: 27 08 2020
pubmed: 18 8 2020
medline: 12 9 2020
entrez: 18 8 2020
Statut: epublish

Résumé

Congestive heart failure is characterized by suppressed cardiac output and arterial filling pressure, leading to renal retention of salt and water, contributing to further volume overload. Mathematical modeling provides a means to investigate the integrated function and dysfunction of heart and kidney in heart failure. This study updates our previously reported integrated model of cardiac and renal functions to account for the fluid exchange between the blood and interstitium across the capillary membrane, allowing the simulation of edema. A state of heart failure with reduced ejection fraction (HF-rEF) was then produced by altering cardiac parameters reflecting cardiac injury and cardiovascular disease, including heart contractility, myocyte hypertrophy, arterial stiffness, and systemic resistance. After matching baseline characteristics of the SOLVD clinical study, parameters governing rates of cardiac remodeling were calibrated to describe the progression of cardiac hemodynamic variables observed over one year in the placebo arm of the SOLVD clinical study. The model was then validated by reproducing improvements in cardiac function in the enalapril arm of SOLVD. The model was then applied to prospectively predict the response to the sodium-glucose co-transporter 2 (SGLT2) inhibitor dapagliflozin, which has been shown to reduce heart failure events in HF-rEF patients in the recent DAPAHF clinical trial by incompletely understood mechanisms. The simulations predict that dapagliflozin slows cardiac remodeling by reducing preload on the heart, and relieves congestion by clearing interstitial fluid without excessively reducing blood volume. This provides a quantitative mechanistic explanation for the observed benefits of SGLT2i in HF-rEF. The model also provides a tool for further investigation of heart failure drug therapies.

Identifiants

pubmed: 32804929
doi: 10.1371/journal.pcbi.1008074
pii: PCOMPBIOL-D-20-00461
pmc: PMC7451992
doi:

Substances chimiques

Benzhydryl Compounds 0
Glucosides 0
Sodium-Glucose Transporter 2 Inhibitors 0
dapagliflozin 1ULL0QJ8UC

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e1008074

Déclaration de conflit d'intérêts

No authors have competing interests.

Références

JAMA. 1996 May 22-29;275(20):1557-62
pubmed: 8622246
Eur Heart J. 2004 Sep;25(18):1614-9
pubmed: 15351160
Circulation. 1986 Oct;74(4):693-702
pubmed: 3757183
N Engl J Med. 2015 Nov 26;373(22):2117-28
pubmed: 26378978
Heart. 2009 Mar;95(3):181-9
pubmed: 18977804
Circulation. 2010 Feb 2;121(4):505-11
pubmed: 20083680
Am J Physiol Renal Physiol. 2017 May 1;312(5):F819-F835
pubmed: 28148531
Am J Physiol Renal Physiol. 2010 Mar;298(3):F543-56
pubmed: 19923413
Clin J Am Soc Nephrol. 2015 Jan 7;10(1):39-46
pubmed: 25512646
Am J Physiol Renal Physiol. 2018 Nov 1;315(5):F1295-F1306
pubmed: 30019930
J Clin Med Res. 2017 Jun;9(6):457-460
pubmed: 28496544
Am J Cardiol. 2006 May 1;97(9):1365-9
pubmed: 16635612
J Am Coll Cardiol. 2012 Oct 16;60(16):1455-69
pubmed: 22999723
Circulation. 2003 Aug 12;108(6):684-90
pubmed: 12885747
Am J Physiol Renal Physiol. 2018 May 1;314(5):F969-F984
pubmed: 29361669
Am J Med. 1980 May;68(5):655-63
pubmed: 7377221
J Cardiol. 2018 May;71(5):471-476
pubmed: 29415819
Acta Biotheor. 2010 Sep;58(2-3):143-70
pubmed: 20683640
Ann Biomed Eng. 2005 Nov;33(11):1607-30
pubmed: 16341927
Diabetes Care. 2010 Oct;33(10):2217-24
pubmed: 20566676
CPT Pharmacometrics Syst Pharmacol. 2017 Jun;6(6):383-392
pubmed: 28548387
N Engl J Med. 2004 May 6;350(19):1953-9
pubmed: 15128895
Comput Methods Biomech Biomed Engin. 2018 Mar;21(4):389-397
pubmed: 29722571
BMC Physiol. 2012 May 14;12:6
pubmed: 22583378
Am J Physiol Renal Physiol. 2016 Dec 1;311(6):F1378-F1390
pubmed: 27707705
Circ Cardiovasc Imaging. 2014 May;7(3):422-9
pubmed: 24723582
J Biomech Eng. 2016 Jun;138(6):061002
pubmed: 27019876
Comput Biol Med. 2019 Jan;104:139-148
pubmed: 30472496
Arterioscler Thromb Vasc Biol. 2018 Jan;38(1):e1-e8
pubmed: 29282247
Virology. 1984 Nov;139(1):178-84
pubmed: 6495655
N Engl J Med. 2017 Aug 17;377(7):644-657
pubmed: 28605608
Biophys J. 1973 Apr;13(4):340-58
pubmed: 4696761
Eur J Heart Fail. 2000 Sep;2(3):299-304
pubmed: 10938492
Annu Rev Physiol. 1972;34:13-46
pubmed: 4334846
JACC Heart Fail. 2017 Aug;5(8):543-551
pubmed: 28711447
J Clin Invest. 1955 Jun;34(6):879-86
pubmed: 14381518
Am J Physiol Regul Integr Comp Physiol. 2014 Feb 15;306(4):R234-47
pubmed: 24285363
Circulation. 1993 Nov;88(5 Pt 1):2277-83
pubmed: 8222122
F1000Res. 2013 Oct 08;2:208
pubmed: 24555102
J Am Coll Cardiol. 2011 Oct 18;58(17):1733-40
pubmed: 21996383
J Am Coll Cardiol. 2008 Oct 21;52(17):1391-8
pubmed: 18940529
J Am Coll Cardiol. 2003 Mar 5;41(5):765-70
pubmed: 12628720
Cardiovasc Pathol. 2012 Sep-Oct;21(5):365-71
pubmed: 22227365
Am J Physiol Renal Physiol. 2011 Feb;300(2):F356-71
pubmed: 21068086
Lancet. 2010 Jun 26;375(9733):2223-33
pubmed: 20609968
N Engl J Med. 2011 Jan 6;364(1):11-21
pubmed: 21073363
J Clin Invest. 1975 Jul;56(1):56-64
pubmed: 124746
Biophys J. 1991 Jan;59(1):93-102
pubmed: 2015392
Cardiovasc Diabetol. 2017 Feb 27;16(1):29
pubmed: 28241822
Circulation. 2010 Jun 15;121(23):2592-600
pubmed: 20547939
Am J Physiol Renal Physiol. 2005 Dec;289(6):F1367-81
pubmed: 15914775
Lancet. 2011 Aug 20;378(9792):676-83
pubmed: 21856481
Int J Numer Method Biomed Eng. 2018 Oct;34(10):e3127
pubmed: 29968364
Lancet. 2013 Sep 14;382(9896):941-50
pubmed: 23850055
J Cardiovasc Magn Reson. 2012 Jul 28;14:51
pubmed: 22839436
N Engl J Med. 2019 Nov 21;381(21):1995-2008
pubmed: 31535829
Invest Ophthalmol. 1965 Dec;4(6):1075-84
pubmed: 5892121
Diabetes Obes Metab. 2018 Mar;20(3):479-487
pubmed: 29024278
Am J Physiol Heart Circ Physiol. 2005 Apr;288(4):H1943-54
pubmed: 15550528
JAMA. 2002 Nov 6;288(17):2144-50
pubmed: 12413374
Am J Physiol Heart Circ Physiol. 2014 Oct 1;307(7):H1056-72
pubmed: 25063796
Clin Pharmacol Ther. 2009 May;85(5):513-9
pubmed: 19129749
Am J Physiol Renal Physiol. 2007 Apr;292(4):F1164-81
pubmed: 17213461
Clin Res Cardiol. 2016 Jan;105(1):10-6
pubmed: 26123828
BMC Cardiovasc Disord. 2018 May 2;18(1):74
pubmed: 29716540
Circ Heart Fail. 2016 Aug;9(8):e002922
pubmed: 27436837
Am J Physiol Regul Integr Comp Physiol. 2014 May;306(9):R647-62
pubmed: 24500431
Am J Physiol Regul Integr Comp Physiol. 2017 Apr 1;312(4):R451-R466
pubmed: 27974315
J Am Coll Cardiol. 1993 Oct;22(4 Suppl A):6A-13A
pubmed: 8376698
Ann Biomed Eng. 2006 Dec;34(12):1833-45
pubmed: 17048105

Auteurs

Hongtao Yu (H)

School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, Georgia, United States of America.

Sanchita Basu (S)

School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, Georgia, United States of America.

K Melissa Hallow (KM)

School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, Georgia, United States of America.
Department of Epidemiology and Biostatistics, University of Georgia, Athens, Georgia, United States of America.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH