DNA damage response and preleukemic fusion genes induced by ionizing radiation in umbilical cord blood hematopoietic stem cells.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
24 08 2020
Historique:
received: 25 11 2019
accepted: 27 07 2020
entrez: 26 8 2020
pubmed: 26 8 2020
medline: 8 1 2021
Statut: epublish

Résumé

There is clear evidence that ionizing radiation (IR) causes leukemia. For many types of leukemia, the preleukemic fusion genes (PFG), as consequences of DNA damage and chromosomal translocations, occur in hematopoietic stem and progenitor cells (HSPC) in utero and could be detected in umbilical cord blood (UCB) of newborns. However, relatively limited information is available about radiation-induced apoptosis, DNA damage and PFG formation in human HSPC. In this study we revealed that CD34+ HSPC compared to lymphocytes: (i) are extremely radio-resistant showing delayed time kinetics of apoptosis, (ii) accumulate lower level of endogenous DNA damage/early apoptotic γH2AX pan-stained cells, (iii) have higher level of radiation-induced 53BP1 and γH2AX/53BP1 co-localized DNA double stranded breaks, and (iv) after low dose of IR may form very low level of BCR-ABL PFG. Within CD34+ HSPC we identified CD34+CD38+ progenitor cells as a highly apoptosis-resistant population, while CD34+CD38- hematopoietic stem/multipotent progenitor cells (HSC/MPP) as a population very sensitive to radiation-induced apoptosis. Our study provides critical insights into how human HSPC respond to IR in the context of DNA damage, apoptosis and PFG.

Identifiants

pubmed: 32839487
doi: 10.1038/s41598-020-70657-z
pii: 10.1038/s41598-020-70657-z
pmc: PMC7445283
doi:

Substances chimiques

Antigens, CD34 0
H2AX protein, human 0
Histones 0
TP53BP1 protein, human 0
Tumor Suppressor p53-Binding Protein 1 0
Fusion Proteins, bcr-abl EC 2.7.10.2

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

13722

Références

Giddings, B. M., Whitehead, T. P., Metayer, C. & Miller, M. D. Childhood leukemia incidence in California: High and rising in the Hispanic population. Cancer 122, 2867–2875. https://doi.org/10.1002/cncr.30129 (2016).
doi: 10.1002/cncr.30129 pubmed: 27351365 pmcid: 5542672
Moloney, W. C. Leukemia in survivors of atomic bombing. The N. Engl. J. Med. 253, 88–90. https://doi.org/10.1056/NEJM195507212530302 (1955).
doi: 10.1056/NEJM195507212530302 pubmed: 14394332
Hsu, W. L. et al. The incidence of leukemia, lymphoma and multiple myeloma among atomic bomb survivors: 1950–2001. Radiat. Res. 179, 361–382. https://doi.org/10.1667/RR2892.1 (2013).
doi: 10.1667/RR2892.1 pubmed: 23398354
Kendall, G. M. et al. A record-based case-control study of natural background radiation and the incidence of childhood leukaemia and other cancers in Great Britain during 1980–2006. Leukemia 27, 3–9. https://doi.org/10.1038/leu.2012.151 (2013).
doi: 10.1038/leu.2012.151 pubmed: 22766784
Fazel, R. et al. Exposure to low-dose ionizing radiation from medical imaging procedures. N. Engl. J. Med. 361, 849–857. https://doi.org/10.1056/NEJMoa0901249 (2009).
doi: 10.1056/NEJMoa0901249 pubmed: 19710483 pmcid: 3707303
Mitelman, F., Johansson, B. & Mertens, F. The impact of translocations and gene fusions on cancer causation. Nat. Rev. Cancer 7, 233–245. https://doi.org/10.1038/nrc2091 (2007).
doi: 10.1038/nrc2091 pubmed: 17361217
Deininger, M. W. et al. Selective induction of leukemia-associated fusion genes by high-dose ionizing radiation. Can. Res. 58, 421–425 (1998).
Ito, T. et al. Induction of BCR-ABL fusion genes by in vitro X-irradiation. Jpn. J. Cancer Res. 84, 105–109. https://doi.org/10.1111/j.1349-7006.1993.tb02840.x (1993).
doi: 10.1111/j.1349-7006.1993.tb02840.x pubmed: 8463127 pmcid: 5919137
Quina, A. S., Gameiro, P., Sa da Coasta, M., Telhada, M. & Parreira, L. PML-RARA fusion transcripts in irradiated and normal hematopoietic cells. Genes Chromosomes Cancer 29, 266–275 (2000).
doi: 10.1002/1098-2264(2000)9999:9999<::AID-GCC1030>3.0.CO;2-#
Skorvaga, M. et al. Incidence of common preleukemic gene fusions in umbilical cord blood in Slovak population. PLoS ONE 9, e91116. https://doi.org/10.1371/journal.pone.0091116 (2014).
doi: 10.1371/journal.pone.0091116 pubmed: 24621554 pmcid: 3951330
Kosik, P. et al. Low numbers of pre-leukemic fusion genes are frequently present in umbilical cord blood without affecting DNA damage response. Oncotarget 8, 35824–35834. https://doi.org/10.18632/oncotarget.16211 (2017).
doi: 10.18632/oncotarget.16211 pubmed: 28415763 pmcid: 5482620
Mori, H. et al. Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc. Natl. Acad. Sci. USA 99, 8242–8247. https://doi.org/10.1073/pnas.112218799 (2002).
doi: 10.1073/pnas.112218799 pubmed: 12048236
Zuna, J. et al. ETV6/RUNX1 (TEL/AML1) is a frequent prenatal first hit in childhood leukemia. Blood 117, 368–369. https://doi.org/10.1182/blood-2010-09-309070 (2011).
doi: 10.1182/blood-2010-09-309070 pubmed: 21212293
Lausten-Thomsen, U. et al. Prevalence of t(12;21)[ETV6-RUNX1]-positive cells in healthy neonates. Blood 117, 186–189. https://doi.org/10.1182/blood-2010-05-282764 (2011).
doi: 10.1182/blood-2010-05-282764 pubmed: 20713965
Milyavsky, M. et al. A distinctive DNA damage response in human hematopoietic stem cells reveals an apoptosis-independent role for p53 in self-renewal. Cell Stem Cell 7, 186–197. https://doi.org/10.1016/j.stem.2010.05.016 (2010).
doi: 10.1016/j.stem.2010.05.016 pubmed: 20619763
Kraft, D. et al. NF-kappaB-dependent DNA damage-signaling differentially regulates DNA double-strand break repair mechanisms in immature and mature human hematopoietic cells. Leukemia 29, 1543–1554. https://doi.org/10.1038/leu.2015.28 (2015).
doi: 10.1038/leu.2015.28 pubmed: 25652738
Vandevoorde, C., Vral, A., Vandekerckhove, B., Philippe, J. & Thierens, H. Radiation sensitivity of human CD34(+) cells versus peripheral blood T lymphocytes of newborns and adults: DNA repair and mutagenic effects. Radiat. Res. 185, 580–590. https://doi.org/10.1667/RR14109.1 (2016).
doi: 10.1667/RR14109.1 pubmed: 27195608
Durdik, M. et al. Hematopoietic stem/progenitor cells are less prone to undergo apoptosis than lymphocytes despite similar DNA damage response. Oncotarget https://doi.org/10.18632/oncotarget.16455 (2017).
doi: 10.18632/oncotarget.16455 pubmed: 28415763 pmcid: 5564729
Vasilyev, S. A., Kubes, M., Markova, E. & Belyaev, I. DNA damage response in CD133 + stem/progenitor cells from umbilical cord blood: Low level of endogenous foci and high recruitment of 53BP1. Int. J. Radiat. Biol. 89, 301–309. https://doi.org/10.3109/09553002.2013.754555 (2013).
doi: 10.3109/09553002.2013.754555 pubmed: 23206244
Belyaev, I. Y. Radiation-induced DNA repair foci: Spatio-temporal aspects of formation, application for assessment of radiosensitivity and biological dosimetry. Mutat Res 704, 132–141. https://doi.org/10.1016/j.mrrev.2010.01.011 (2010).
doi: 10.1016/j.mrrev.2010.01.011 pubmed: 20096808
Durdik, M. et al. Imaging flow cytometry as a sensitive tool to detect low-dose-induced DNA damage by analyzing 53BP1 and gammaH2AX foci in human lymphocytes. Cytometry A 87, 1070–1078. https://doi.org/10.1002/cyto.a.22731 (2015).
doi: 10.1002/cyto.a.22731 pubmed: 26243567
Inoue, A. et al. Slug, a highly conserved zinc finger transcriptional repressor, protects hematopoietic progenitor cells from radiation-induced apoptosis in vivo. Cancer Cell 2, 279–288 (2002).
doi: 10.1016/S1535-6108(02)00155-1
Fukuda, S. & Pelus, L. M. Regulation of the inhibitor-of-apoptosis family member survivin in normal cord blood and bone marrow CD34(+) cells by hematopoietic growth factors: Implication of survivin expression in normal hematopoiesis. Blood 98, 2091–2100 (2001).
doi: 10.1182/blood.V98.7.2091
Merkerova, M., Vasikova, A., Belickova, M. & Bruchova, H. MicroRNA expression profiles in umbilical cord blood cell lineages. Stem Cells Dev 19, 17–26. https://doi.org/10.1089/scd.2009.0071 (2010).
doi: 10.1089/scd.2009.0071 pubmed: 19435428
Mohr, A. et al. Caspase-8L expression protects CD34+ hematopoietic progenitor cells and leukemic cells from CD95-mediated apoptosis. Oncogene 24, 2421–2429. https://doi.org/10.1038/sj.onc.1208432 (2005).
doi: 10.1038/sj.onc.1208432 pubmed: 15735742
Rube, C. E. et al. Accumulation of DNA damage in hematopoietic stem and progenitor cells during human aging. PLoS ONE https://doi.org/10.1371/journal.pone.0017487 (2011).
doi: 10.1371/journal.pone.0017487 pubmed: 21408175 pmcid: 3049780
Hole, P. S. et al. Ras-induced reactive oxygen species promote growth factor-independent proliferation in human CD34+ hematopoietic progenitor cells. Blood 115, 1238–1246. https://doi.org/10.1182/blood-2009-06-222869 (2010).
doi: 10.1182/blood-2009-06-222869 pubmed: 20007804
Piccoli, C. et al. Bone-marrow derived hematopoietic stem/progenitor cells express multiple isoforms of NADPH oxidase and produce constitutively reactive oxygen species. Biochem. Biophys. Res. Commun. 353, 965–972. https://doi.org/10.1016/j.bbrc.2006.12.148 (2007).
doi: 10.1016/j.bbrc.2006.12.148 pubmed: 17204244
Piccoli, C. et al. Characterization of mitochondrial and extra-mitochondrial oxygen consuming reactions in human hematopoietic stem cells. Novel evidence of the occurrence of NAD(P)H oxidase activity. J. Biol. Chem. 280, 26467–26476. https://doi.org/10.1074/jbc.M500047200 (2005).
doi: 10.1074/jbc.M500047200 pubmed: 15883163
Durdik, M. et al. Microwaves from mobile phone induce reactive oxygen species but not DNA damage, preleukemic fusion genes and apoptosis in hematopoietic stem/progenitor cells. Sci. Rep. 9, 16182. https://doi.org/10.1038/s41598-019-52389-x (2019).
doi: 10.1038/s41598-019-52389-x pubmed: 31700008 pmcid: 6838175
Solier, S. & Pommier, Y. The apoptotic ring A novel entity with phosphorylated histones H2AX and H2B and activated DNA damage response kinases. Cell Cycle 8, 1853–1859. https://doi.org/10.4161/Cc.8.12.8865 (2009).
doi: 10.4161/Cc.8.12.8865 pubmed: 19448405
Torudd, J. et al. Dose-response for radiation-induced apoptosis, residual 53BP1 foci and DNA-loop relaxation in human lymphocytes. Int. J. Radiat. Biol. 81, 125–138. https://doi.org/10.1080/09553000500077211 (2005).
doi: 10.1080/09553000500077211 pubmed: 16019922
Jakl, L. et al. Validation of JCountPro software for efficient assessment of ionizing radiation-induced foci in human lymphocytes. Int. J. Radiat. Biol. 92, 766–773. https://doi.org/10.1080/09553002.2016.1222093 (2016).
doi: 10.1080/09553002.2016.1222093 pubmed: 27648492
Solier, S. & Pommier, Y. The nuclear gamma-H2AX apoptotic ring: Implications for cancers and autoimmune diseases. Cell. Mol. Life Sci. 71, 2289–2297. https://doi.org/10.1007/s00018-013-1555-2 (2014).
doi: 10.1007/s00018-013-1555-2 pubmed: 24448903 pmcid: 4032592
Gabelova, A., Slamenova, D., Ruzekova, L., Farkasova, T. & Horvathova, E. Measurement of DNA strand breakage and DNA repair induced with hydrogen peroxide using single cell gel electrophoresis, alkaline DNA unwinding and alkaline elution of DNA. Neoplasma 44, 380–388 (1997).
pubmed: 9605012
Wozniak, K. & Blasiak, J. In vitro genotoxicity of lead acetate: Induction of single and double DNA strand breaks and DNA-protein cross-links. Mutat. Res. 535, 127–139 (2003).
doi: 10.1016/S1383-5718(02)00295-4
Gabert, J. et al. Standardization and quality control studies of “real-time” quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia—A Europe Against Cancer program. Leukemia 17, 2318–2357. https://doi.org/10.1038/sj.leu.2403135 (2003).
doi: 10.1038/sj.leu.2403135 pubmed: 14562125

Auteurs

Pavol Kosik (P)

Deparment of Radiobiology, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia. pavol.kosik@savba.sk.

Matus Durdik (M)

Deparment of Radiobiology, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.

Lukas Jakl (L)

Deparment of Radiobiology, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.

Milan Skorvaga (M)

Deparment of Radiobiology, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.

Eva Markova (E)

Deparment of Radiobiology, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.

Gabriela Vesela (G)

Deparment of Radiobiology, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.

Lenka Vokalova (L)

Deparment of Radiobiology, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.

Lucia Kolariková (L)

Deparment of Radiobiology, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.

Eva Horvathova (E)

Deparment of Genetics, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovak Republic.

Katarina Kozics (K)

Deparment of Genetics, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovak Republic.

Igor Belyaev (I)

Deparment of Radiobiology, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH