Deciphering the genetic landscape of pulmonary lymphomas.


Journal

Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
ISSN: 1530-0285
Titre abrégé: Mod Pathol
Pays: United States
ID NLM: 8806605

Informations de publication

Date de publication:
02 2021
Historique:
received: 07 07 2020
accepted: 07 08 2020
revised: 07 08 2020
pubmed: 29 8 2020
medline: 11 2 2023
entrez: 29 8 2020
Statut: ppublish

Résumé

Pulmonary lymphoid malignancies comprise various entities, 80% of them are pulmonary marginal zone B-cell lymphomas (PMZL). So far, little is known about point mutations in primary pulmonary lymphomas. We characterized the genetic landscape of primary pulmonary lymphomas using a customized high-throughput sequencing gene panel covering 146 genes. Our cohort consisted of 28 PMZL, 14 primary diffuse large B-cell lymphomas (DLBCL) of the lung, 7 lymphomatoid granulomatoses (LyG), 5 mature small B-cell lymphomas and 16 cases of reactive lymphoid lesions. Mutations were detected in 22/28 evaluable PMZL (median 2 mutation/case); 14/14 DLBCL (median 3 mutations/case) and 4/7 LyG (1 mutation/case). PMZL showed higher prevalence for mutations in chromatin modifier-encoding genes (44% of mutant genes), while mutations in genes related to the NF-κB pathway were less common (24% of observed mutations). There was little overlap between mutations in PMZL and DLBCL. MALT1 rearrangements were more prevalent in PMZL than BCL10 aberrations, and both were absent in DLBCL. LyG were devoid of gene mutations associated with immune escape. The mutational landscape of PMZL differs from that of extranodal MZL of other locations and also from splenic MZL. Their landscape resembles more that of nodal MZL, which also show a predominance of mutations of chromatin modifiers. The different mutational composition of pulmonary DLBCL compared to PMZL suggests that the former probably do not present transformations. DLBCL bear more mutations/case and immune escape gene mutations compared to LyG, suggesting that EBV infection in LyG may substitute for mutations.

Identifiants

pubmed: 32855441
doi: 10.1038/s41379-020-00660-2
pii: S0893-3952(22)00678-0
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

371-379

Références

Ferraro P, Trastek VF, Adlakha H, Deschamps C, Allen MS, Pairolero PC. Primary non-Hodgkin’s lymphoma of the lung. Ann Thorac Surg. 2000;69:993–7.
doi: 10.1016/S0003-4975(99)01535-0
Borie R, Wislez M, Antoine M, Cadranel J. Lymphoproliferative disorders of the lung. Respiration. 2017;94:157–75.
doi: 10.1159/000477740
Bertoni F, Rossi D, Zucca E. Recent advances in understanding the biology of marginal zone lymphoma. F1000Res. 2018;7:406.
doi: 10.12688/f1000research.13826.1
Borie R, Wislez M, Thabut G, Antoine M, Rabbat A, Couderc L-J, et al. Clinical characteristics and prognostic factors of pulmonary MALT lymphoma. Eur Respir J. 2009;34:1408–16.
doi: 10.1183/09031936.00039309
Nathwani BN, Anderson JR, Armitage JO, Cavalli F, Diebold J, Drachenberg MR, et al. Marginal zone b-cell lymphoma: a clinical comparison of nodal and mucosa-associated lymphoid tissue types. Non-hodgkin’s lymphoma classification project. J Clin Oncol. 1999;17:2486–92.
doi: 10.1200/JCO.1999.17.8.2486
Troppan K, Wenzl K, Neumeister P, Deutsch A. Molecular pathogenesis of MALT lymphoma. Gastroenterol Res Pr. 2015;2015:1–10.
doi: 10.1155/2015/102656
Cook JR, PG Isaacson, A Chott, S Nakamura, HK Müller-Hermelink, NL Harris et al. WHO classification of tumours of haematopoietic and lymphoid tissues, 4th ed. Lyon: International Agency for Research on Cancer; 2017.
Schreuder MI, van den Brand M, Hebeda KM, Groenen PJTA, van Krieken JH, Scheijen B. Novel developments in the pathogenesis and diagnosis of extranodal marginal zone lymphoma. J Hematop. 2017;10:91–107.
doi: 10.1007/s12308-017-0302-2
Cani AK, Soliman M, Hovelson DH, Liu C-J, McDaniel AS, Haller MJ, et al. Comprehensive genomic profiling of orbital and ocular adnexal lymphomas identifies frequent alterations in MYD88 and chromatin modifiers: new routes to targeted therapies. Mod Pathol. 2016;29:685–97.
doi: 10.1038/modpathol.2016.79
Jung H, Yoo HY, Ho Lee S, Shin S, Kim SC, Lee S, et al. The mutational landscape of ocular marginal zone lymphoma identifies frequent alterations in TNFAIP3 followed by mutations in TBL1XR1 and CREBBP. Oncotarget. 2017;8:17038–49.
doi: 10.18632/oncotarget.14928
Johansson P, Klein-Hitpass L, Grabellus F, Arnold G, Klapper W, Pförtner R, et al. Recurrent mutations in NF-κB pathway components, KMT2D, and NOTCH1/2 in ocular adnexal MALT-type marginal zone lymphomas. Oncotarget. 2016;7:62627–39.
doi: 10.18632/oncotarget.11548
Vela V, Juskevicius D, Gerlach MM, Meyer P, Graber A, Cathomas G, et al. High throughput sequencing reveals high specificity of TNFAIP3 mutations in ocular adnexal marginal zone B‐cell lymphomas. Hematol Oncol. 2020;107:2718–31.
Hyeon J, Lee B, Shin SH, Yoo HY, Kim SJ, Kim WS, et al. Targeted deep sequencing of gastric marginal zone lymphoma identified alterations of TRAF3 and TNFAIP3 that were mutually exclusive for MALT1 rearrangement. Mod Pathol. 2018;31:1418–28.
doi: 10.1038/s41379-018-0064-0
Moody S, Thompson JS, Chuang S-S, Liu H, Raderer M, Vassiliou G, et al. Novel GPR34 and CCR6 mutation and distinct genetic profiles in MALT lymphomas of different sites. Haematologica. 2018;103:1329–36.
doi: 10.3324/haematol.2018.191601
Cascione L, Rinaldi A, Bruscaggin A, Tarantelli C, Arribas AJ, Kwee I, et al. Novel insights into the genetics and epigenetics of MALT lymphoma unveiled by next generation sequencing analyses. Haematologica. 2019;104:558–61.
doi: 10.3324/haematol.2018.214957
Spina V, Khiabanian H, Messina M, Monti S, Cascione L, Bruscaggin A, et al. The genetics of nodal marginal zone lymphoma. Blood. 2016;128:1362–73.
doi: 10.1182/blood-2016-02-696757
Pillonel V, Juskevicius D, Ng CKY, Bodmer A, Zettl A, Jucker D, et al. High-throughput sequencing of nodal marginal zone lymphomas identifies recurrent BRAF mutations. Leukemia. 2018;32:2412–26.
doi: 10.1038/s41375-018-0082-4
Clipson A, Wang M, De Leval L, Ashton-Key M, Wotherspoon A, Vassiliou G, et al. KLF2 mutation is the most frequent somatic change in splenic marginal zone lymphoma and identifies a subset with distinct genotype. Leukemia. 2015;29:1177–85.
doi: 10.1038/leu.2014.330
Maurus K, Appenzeller S, Roth S, Kuper J, Rost S, Meierjohann S, et al. Panel sequencing shows recurrent genetic FAS alterations in primary cutaneous marginal zone lymphoma. J Invest Dermatol. 2018;138:1573–81.
doi: 10.1016/j.jid.2018.02.015
Remstein ED, Dogan A, Einerson RR, Paternoster SF, Fink SR, Law M, et al. The incidence and anatomic site specificity of chromosomal translocations in primary extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma) in North America. Am J Surg Pathol. 2006;30:1546–53.
doi: 10.1097/01.pas.0000213275.60962.2a
Dierlamm J, Baens M, Wlodarska I, Stefanova-Ouzounova M, Hernandez JM, Hossfeld DK, et al. The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood. 1999;93:3601–9.
doi: 10.1182/blood.V93.11.3601
Willis TG, Jadayel DM, Du M-Q, Peng H, Perry AR, Abdul-Rauf M, et al. Bcl10 Is Involved in t(1;14)(p22;q32) of MALT B cell lymphoma and mutated in multiple tumor types. Cell. 1999;96:35–45.
doi: 10.1016/S0092-8674(00)80957-5
Tzankov A, Xu-Monette ZY, Gerhard M, Visco C, Dirnhofer S, Gisin N, et al. Rearrangements of MYC gene facilitate risk stratification in diffuse large B-cell lymphoma patients treated with rituximab-CHOP. Mod Pathol. 2014;27:958–71.
doi: 10.1038/modpathol.2013.214
Meier VS, Rufle A, Gudat F. Simultaneous evaluation of T- and B-cell clonality, t(11;14) and t(14;18), in a single reaction by a fourcolor multiplex polymerase chain reaction assay and automated high-resolution fragment analysis: A method for the rapid molecular diagnosis of lymphop. Am J Pathol. 2001;159:2031–43.
doi: 10.1016/S0002-9440(10)63055-6
Liu X, Wu C, Li C, Boerwinkle E. dbNSFP v3.0: a one-stop database of functional predictions and annotations for human nonsynonymous and splice-site SNVs. Hum Mutat. 2016;37:235–41.
doi: 10.1002/humu.22932
Juskevicius D, Jucker D, Klingbiel D, Mamot C, Dirnhofer S, Tzankov A. Mutations of CREBBP and SOCS1 are independent prognostic factors in diffuse large B cell lymphoma: mutational analysis of the SAKK 38/07 prospective clinical trial cohort. J Hematol Oncol. 2017;10:1–10.
doi: 10.1186/s13045-017-0438-7
Green MR. Chromatin modifying gene mutations in follicular lymphoma. Blood. 2018;131:595–604.
doi: 10.1182/blood-2017-08-737361
Heyninck K, Beyaert R. A20 inhibits NF-κB activation by dual ubiquitin-editing functions. Trends Biochem Sci. 2005;30:1–4.
doi: 10.1016/j.tibs.2004.11.001
Spina V, Rossi D. Molecular pathogenesis of splenic and nodal marginal zone lymphoma. Best Pr Res Clin Haematol. 2017;30:5–12.
doi: 10.1016/j.beha.2016.09.004
Kuroda K, Han H, Tani S, Tanigaki K, Tun T, Furukawa T, et al. Regulation of marginal zone B cell development by MINT, a suppressor of Notch/RBP-J signaling pathway. Immunity. 2003;18:301–12.
doi: 10.1016/S1074-7613(03)00029-3
Pillai S, Cariappa A. The follicular versus marginal zone B lymphocyte cell fate decision. Nat Rev Immunol. 2009;9:767–77.
doi: 10.1038/nri2656
Saito T, Chiba S, Ichikawa M, Kunisato A, Asai T, Shimizu K, et al. Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. Immunity. 2003;18:675–85.
doi: 10.1016/S1074-7613(03)00111-0
Schmitz R, Wright GW, Huang DW, Johnson CA, Phelan JD, Wang JQ, et al. Genetics and pathogenesis of diffuse large B-cell lymphoma. N. Engl J Med. 2018;378:1396–407.
doi: 10.1056/NEJMoa1801445
Zhou H, Du X, Zhao T, Ouyang Z, Liu W, Deng M, et al. Distribution and influencing factors of tumor mutational burden in different lymphoma subtypes. J Clin Oncol. 2019;37:e19053–e19053.
doi: 10.1200/JCO.2019.37.15_suppl.e19053
Zhu Z, Liu W, Mamlouk O, O’Donnell JE, Sen D, Avezbakiyev B. Primary pulmonary diffuse large B cell non-hodgkin’s lymphoma: a case report and literature review. Am J Case Rep. 2017;18:286–90.
doi: 10.12659/AJCR.901528
Menter T, Juskevicius D, Alikian M, Steiger J, Dirnhofer S, Tzankov A, et al. Mutational landscape of B-cell post-transplant lymphoproliferative disorders. Br J Haematol. 2017;178:48–56.
doi: 10.1111/bjh.14633
Zhou Y, Xu Z, Lin W, Duan Y, Lu C, Liu W, et al. Comprehensive genomic profiling of EBV-positive diffuse large B-cell lymphoma and the expression and clinicopathological correlations of some related genes. Front Oncol. 2019;9:683.
doi: 10.3389/fonc.2019.00683
Ok CY, Li L, Young KH. EBV-driven B-cell lymphoproliferative disorders: from biology, classification and differential diagnosis to clinical management. Exp Mol Med. 2015;47:e132–e132.
doi: 10.1038/emm.2014.82

Auteurs

Visar Vela (V)

Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland.

Darius Juskevicius (D)

Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland.

Spasenija Savic Prince (SS)

Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland.

Gieri Cathomas (G)

Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland.

Susanne Dertinger (S)

Institute of Pathology, Hospital Feldkirch, Feldkirch, Austria.

Joachim Diebold (J)

Institute of Pathology, Cantonal Hospital Lucerne, Lucerne, Switzerland.

Lukas Bubendorf (L)

Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland.

Milo Horcic (M)

Institute for Histologic und Cytologic Diagnostics AG, Aarau, Switzerland.

Gad Singer (G)

Institute of Pathology, Cantonal Hospital Baden, Baden, Switzerland.

Andreas Zettl (A)

Institute of Pathology, Viollier AG, Allschwil, Switzerland.

Stefan Dirnhofer (S)

Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland.

Alexandar Tzankov (A)

Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland. alexandar.tzankov@usb.ch.

Thomas Menter (T)

Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C

Classifications MeSH