Host age is not a consistent predictor of microbial diversity in the coral Porites lutea.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
01 09 2020
01 09 2020
Historique:
received:
05
02
2020
accepted:
07
08
2020
entrez:
3
9
2020
pubmed:
3
9
2020
medline:
9
3
2021
Statut:
epublish
Résumé
Corals harbour diverse microbial communities that can change in composition as the host grows in age and size. Larger and older colonies have been shown to host a higher diversity of microbial taxa and this has been suggested to be a consequence of their more numerous, complex and varied micro-niches available. However, the effects of host age on community structure and diversity of microbial associates remain equivocal in the few studies performed to date. To test this relationship more robustly, we use established techniques to accurately determine coral host age by quantifying annual skeletal banding patterns, and utilise high-throughput sequencing to comprehensively characterise the microbiome of the common reef-building coral, Porites lutea. Our results indicate no clear link between coral age and microbial diversity or richness. Different sites display distinct age-dependent diversity patterns, with more anthropogenically impacted reefs appearing to show a winnowing of microbial diversity with host age, possibly a consequence of corals adapting to degraded environments. Less impacted sites do not show a signature of winnowing, and we observe increases in microbial richness and diversity as the host ages. Furthermore, we demonstrate that corals of a similar age from the same reef can show very different microbial richness and diversity.
Identifiants
pubmed: 32873814
doi: 10.1038/s41598-020-71117-4
pii: 10.1038/s41598-020-71117-4
pmc: PMC7463248
doi:
Substances chimiques
RNA, Ribosomal, 16S
0
DNA
9007-49-2
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
14376Références
Pootakham, W. et al. Dynamics of coral-associated microbiomes during a thermal bleaching event. Microbiologyopen 7, e00604 (2018).
pubmed: 29573244
pmcid: 6182559
Krediet, C. J., Ritchie, K. B., Paul Valerie, J. & Max, T. Coral-associated micro-organisms and their roles in promoting coral health and thwarting diseases. Proc. R. Soc. B Biol. Sci. 280, 20122328 (2013).
Ziegler, M., Seneca, F. O., Yum, L. K., Palumbi, S. R. & Voolstra, C. R. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat. Commun. 8, 14213 (2017).
pubmed: 28186132
pmcid: 5309854
Rädecker, N., Pogoreutz, C., Voolstra, C. R., Wiedenmann, J. & Wild, C. Nitrogen cycling in corals: The key to understanding holobiont functioning?. Trends Microbiol. 23, 490–497 (2015).
pubmed: 25868684
Ritchie, K. B. & Smith, G. W. Microbial communities of coral surface mucopolysaccharide layers. In Coral Health and Disease (eds Rosenberg, E. & Loya, Y.) 259–264 (Springer, Berlin Heidelberg, 2004).
Holm, J. B. & Heidelberg, K. B. Microbiomes of Muricea californica and M. fruticosa: Comparative analyses of two co-occurring eastern pacific octocorals. Front. Microbiol. 7, 917 (2016).
pubmed: 27445997
pmcid: 4914490
Sweet, M. J., Brown, B. E., Dunne, R. P., Singleton, I. & Bulling, M. Evidence for rapid, tide-related shifts in the microbiome of the coral Coelastrea aspera. Coral Reefs 36, 815–828 (2017).
Ziegler, M. et al. Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea. Mar. Pollut. Bull. 105, 629–640 (2016).
pubmed: 26763316
Archer, S. D. J. et al. Air mass source determines airborne microbial diversity at the ocean–atmosphere interface of the Great Barrier Reef marine ecosystem. ISME J. https://doi.org/10.1038/s41396-019-0555-0 (2019).
doi: 10.1038/s41396-019-0555-0
pubmed: 31754205
pmcid: 7031240
Wainwright, B. J., Afiq-Rosli, L., Zahn, G. L. & Huang, D. Characterisation of coral-associated bacterial communities in an urbanised marine environment shows strong divergence over small geographic scales. Coral Reefs https://doi.org/10.1007/s00338-019-01837-1 (2019).
doi: 10.1007/s00338-019-01837-1
Chu, N. D. & Vollmer, S. V. Caribbean corals house shared and host-specific microbial symbionts over time and space. Environ. Microbiol. Rep. 8, 493–500 (2016).
pubmed: 27083502
Wainwright, B. J., Bauman, A. G., Zahn, G. L., Todd, P. A. & Huang, D. Characterization of fungal biodiversity and communities associated with the reef macroalga Sargassum ilicifolium reveals fungal community differentiation according to geographic locality and algal structure. Mar. Biodivers. https://doi.org/10.1007/s12526-019-00992-6 (2019).
doi: 10.1007/s12526-019-00992-6
Wainwright, B. J., Zahn, G. L., Arlyza, I. S. & Amend, A. S. Seagrass-associated fungal communities follow Wallace’s line, but host genotype does not structure fungal community. J. Biogeogr. 45, 762–770 (2018).
Hernandez-Agreda, A., Leggat, W., Bongaerts, P., Herrera, C. & Ainsworth, T. D. Rethinking the coral microbiome: Simplicity exists within a diverse microbial biosphere. mBio 9, e00812 (2018).
pubmed: 30301849
pmcid: 6178627
Williams, A. D., Brown, B. E., Putchim, L. & Sweet, M. J. Age-related shifts in bacterial diversity in a reef coral. PLoS ONE 10, e0144902 (2015).
pubmed: 26700869
pmcid: 4689413
Pollock, F. J. et al. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat. Commun. 9, 4921 (2018).
pubmed: 30467310
pmcid: 6250698
Epstein, H. E., Torda, G., Munday, P. L. & van Oppen, M. J. H. Parental and early life stage environments drive establishment of bacterial and dinoflagellate communities in a common coral. ISME J. 13, 1635–1638 (2019).
pubmed: 30705413
pmcid: 6776020
Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).
pubmed: 22699611
pmcid: 3376388
van Dongen, W. F. et al. Age-related differences in the cloacal microbiota of a wild bird species. BMC Ecol. 13, 11 (2013).
pubmed: 23531085
pmcid: 3668179
Huang, D. et al. Extraordinary diversity of reef corals in the South China Sea. Mar. Biodivers. 45, 157–168 (2015).
Toda, T. et al. Community structures of coral reefs around Peninsular Malaysia. J. Oceanogr. 63, 113–123 (2007).
Tanzil, J. T. I. et al. Regional decline in growth rates of massive Porites corals in Southeast Asia. Glob. Change Biol. 19, 3011–3023 (2013).
Tanzil, J. T. I. et al. Luminescence and density banding patterns in massive Porites corals around the Thai-Malay Peninsula, Southeast Asia. Limnol. Oceanogr. 61, 2003–2026 (2016).
Pootakham, W. et al. High resolution profiling of coral-associated bacterial communities using full-length 16S rRNA sequence data from PacBio SMRT sequencing system. Sci. Rep. 7, 2774 (2017).
pubmed: 28584301
pmcid: 5459821
Øvreås, L., Daae, F. L., Torsvik, V. & Rodríguez-Valera, F. Characterization of microbial diversity in hypersaline environments by melting profiles and reassociation kinetics in combination with terminal restriction fragment length polymorphism (T-RFLP). Microb. Ecol. 46, 291–301 (2003).
pubmed: 12904916
Baker, B. J. & Banfield, J. F. Microbial communities in acid mine drainage. FEMS Microbiol. Ecol. 44, 139–152 (2003).
pubmed: 19719632
Li, S.-J. et al. Microbial communities evolve faster in extreme environments. Sci. Rep. 4, 6205 (2014).
pubmed: 25158668
pmcid: 4145313
Peter, J. et al. A microbial signature of psychological distress in irritable bowel syndrome. Psychosom. Med. 80, 698–709 (2018).
pubmed: 30095672
pmcid: 6250280
Karl, J. P. et al. Effects of psychological, environmental and physical stressors on the gut microbiota. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.02013 (2018).
doi: 10.3389/fmicb.2018.02013
pubmed: 30258412
pmcid: 6143810
Guest, J. R. et al. 27 years of benthic and coral community dynamics on turbid, highly urbanised reefs off Singapore. Sci. Rep. 6, 36260 (2016).
pubmed: 27824083
pmcid: 5099948
Wong, J. S. Y. et al. Comparing patterns of taxonomic, functional and phylogenetic diversity in reef coral communities. Coral Reefs 37, 737–750 (2018).
Chow, G. S. E., Chan, Y. K. S., Jain, S. S. & Huang, D. Light limitation selects for depth generalists in urbanised reef coral communities. Mar. Environ. Res. 147, 101–112 (2019).
pubmed: 31029435
Calvani, R. et al. Of microbes and minds: A narrative review on the second brain aging. Front. Med. (Lausanne) https://doi.org/10.3389/fmed.2018.00053 (2018).
doi: 10.3389/fmed.2018.00053
Nagpal, R. et al. Gut microbiome and aging: Physiological and mechanistic insights. Nutr Healthy Aging 4, 267–285 (2018).
pubmed: 29951588
pmcid: 6004897
Choi, J., Hur, T.-Y. & Hong, Y. Influence of altered gut microbiota composition on aging and aging-related diseases. J. Lifestyle Med. 8, 1–7 (2018).
pubmed: 29581954
pmcid: 5846638
Soong, K., Chen, C. A. & Chang, J.-C. A very large poritid colony at Green Island, Taiwan. Coral Reefs 18, 42–42 (1999).
Goodkin, N. et al. Coral communities of Hong Kong: Long-lived corals in a marginal reef environment. Mar. Ecol. Prog. Ser. 426, 185–196 (2011).
Bythell, J. C., Brown, B. E. & Kirkwood, T. B. L. Do reef corals age?. Biol. Rev. 93, 1192–1202 (2018).
pubmed: 29282837
Lee, N. L. Y., Huang, D., Quek, Z. B. R., Lee, J. N. & Wainwright, B. J. Mangrove-associated fungal communities are differentiated by geographic location and host structure. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.02456 (2019).
doi: 10.3389/fmicb.2019.02456
pubmed: 32038529
pmcid: 6932956
Wainwright, B. J. et al. Seagrass-associated fungal communities show distance decay of similarity that has implications for seagrass management and restoration. Ecol. Evol. 9, 11288–11297 (2019).
pubmed: 31641473
pmcid: 6802368
Röthig, T., Ochsenkühn, M. A., Roik, A., van der Merwe, R. & Voolstra, C. R. Long-term salinity tolerance is accompanied by major restructuring of the coral bacterial microbiome. Mol. Ecol. 25, 1308–1323 (2016).
pubmed: 26840035
pmcid: 4804745
Sin, T. M. et al. The urban marine environment of Singapore. Region. Stud. Mar. Sci. 8, 331–339 (2016).
Chénard, C. et al. Temporal and spatial dynamics of bacteria, Archaea and protists in equatorial coastal waters. Sci. Rep. 9, 1–13 (2019).
Ford, A. K. et al. Reefs under Siege—The rise, putative drivers, and consequences of benthic cyanobacterial mats. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00018 (2018).
doi: 10.3389/fmars.2018.00018
Charpy, L., Casareto, B. E., Langlade, M. J. & Suzuki, Y. Cyanobacteria in coral reef ecosystems: A review. J. Mar. Biol. 2012, 1–9 (2012).
Huang, D., Tun, K., Chou, L. M. & Todd, P. A. An inventory of zooxanthellate scleractinian corals in Singapore, including 33 new records. Raffles Bull. Zool. Suppl. 22, 69 (2009).
Todd, P. A. et al. Towards an urban marine ecology: Characterizing the drivers, patterns and processes of marine ecosystems in coastal cities. Oikos https://doi.org/10.1111/oik.05946 (2019).
doi: 10.1111/oik.05946
Rubin, B. E. R. et al. Investigating the impact of storage conditions on microbial community composition in soil samples. PLoS ONE 8, e70460 (2013).
pubmed: 23936206
pmcid: 3729949
Lauber, C. L., Zhou, N., Gordon, J. I., Knight, R. & Fierer, N. Effect of storage conditions on the assessment of bacterial community structure in soil and human-associated samples: Influence of short-term storage conditions on microbiota. FEMS Microbiol. Lett. 307, 80–86 (2010).
pubmed: 20412303
pmcid: 3148093
Carruthers, L. V. et al. The impact of storage conditions on human stool 16S rRNA microbiome composition and diversity. PeerJ 7, e8133 (2019).
pubmed: 31824766
pmcid: 6894433
Veron, J. Corals of the World (Australian Institute of Marine Science, Townsville, 2000).
Forsman, Z., Wellington, G. M., Fox, G. E. & Toonen, R. J. Clues to unraveling the coral species problem: Distinguishing species from geographic variation in Porites across the Pacific with molecular markers and microskeletal traits. PeerJ 3, e751 (2015).
pubmed: 25674364
pmcid: 4319317
Forsman, Z. H., Barshis, D. J., Hunter, C. L. & Toonen, R. J. Shape-shifting corals: Molecular markers show morphology is evolutionarily plastic in Porites. BMC Evol. Biol. 9, 45 (2009).
pubmed: 19239678
pmcid: 2656472
Terraneo, T. I. et al. Environmental latitudinal gradients and host-specificity shape Symbiodiniaceae distribution in Red Sea Porites corals. J. Biogeogr. https://doi.org/10.1111/jbi.13672 (2019).
doi: 10.1111/jbi.13672
Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. PNAS 108, 4516–4522 (2011).
pubmed: 20534432
Lundberg, D. S., Yourstone, S., Mieczkowski, P., Jones, C. D. & Dangl, J. L. Practical innovations for high-throughput amplicon sequencing. Nat. Methods 10, 999–1002 (2013).
pubmed: 23995388
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
pubmed: 4927377
pmcid: 4927377
Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226 (2018).
pubmed: 30558668
pmcid: 6298009
Cole, J. R. et al. The ribosomal database project (RDP-II): Introducing myRDP space and quality controlled public data. Nucleic Acids Res. 35, D169–D172 (2007).
pubmed: 17090583
Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).
pubmed: 23193283
pmcid: 23193283
Oksanen, J. et al. vegan: Community Ecology Package (2019).
McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
pubmed: 3632530
pmcid: 3632530
Martin, B. D., Witten, D. & Willis, A. D. Modeling microbial abundances and dysbiosis with beta-binomial regression. Ann. Appl. Stat. 14, 94–115 (2020).