Role of in silico structural modeling in predicting immunogenic neoepitopes for cancer vaccine development.
Antigen
Immunology
Oncology
Journal
JCI insight
ISSN: 2379-3708
Titre abrégé: JCI Insight
Pays: United States
ID NLM: 101676073
Informations de publication
Date de publication:
03 09 2020
03 09 2020
Historique:
received:
06
02
2020
accepted:
24
07
2020
entrez:
4
9
2020
pubmed:
4
9
2020
medline:
22
5
2021
Statut:
epublish
Résumé
In prior studies, we delineated the landscape of neoantigens arising from nonsynonymous point mutations in a murine pancreatic cancer model, Panc02. We developed a peptide vaccine by targeting neoantigens predicted using a pipeline that incorporates the MHC binding algorithm NetMHC. The vaccine, when combined with immune checkpoint modulators, elicited a robust neoepitope-specific antitumor immune response and led to tumor clearance. However, only a small fraction of the predicted neoepitopes induced T cell immunity, similarly to that reported for neoantigen vaccines tested in clinical studies. While these studies have used binding affinities to MHC I as surrogates for T cell immunity, this approach does not include spatial information on the mutated residue that is crucial for TCR activation. Here, we investigate conformational alterations in and around the MHC binding groove induced by selected minimal neoepitopes, and we examine the influence of a given mutated residue as a function of its spatial position. We found that structural parameters, including the solvent-accessible surface area (SASA) of the neoepitope and the position and spatial configuration of the mutated residue within the sequence, can be used to improve the prediction of immunogenic neoepitopes for inclusion in cancer vaccines.
Identifiants
pubmed: 32879142
pii: 136991
doi: 10.1172/jci.insight.136991
pmc: PMC7526456
doi:
pii:
Substances chimiques
Antigens, Neoplasm
0
Cancer Vaccines
0
Epitopes
0
Histocompatibility Antigens Class I
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NCI NIH HHS
ID : P50 CA062924
Pays : United States
Références
JCI Insight. 2018 Oct 18;3(20):
pubmed: 30333318
J Clin Invest. 2019 Jan 2;129(1):46-47
pubmed: 30507614
Nature. 2019 Jan;565(7738):234-239
pubmed: 30568305
Protein Sci. 2003 May;12(5):1007-17
pubmed: 12717023
Front Immunol. 2019 Aug 28;10:2047
pubmed: 31555277
Nature. 2017 Nov 23;551(7681):512-516
pubmed: 29132146
Nature. 2017 Jul 13;547(7662):222-226
pubmed: 28678784
Nat Med. 2016 Feb;22(2):122-4
pubmed: 26845402
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W407-10
pubmed: 17517781
J Clin Oncol. 2013 Nov 10;31(32):e439-42
pubmed: 24043743
J Mol Biol. 1993 Jun 20;231(4):1049-67
pubmed: 8515464
Proteins. 1994 Jun;19(2):132-40
pubmed: 8090707
J Thorac Oncol. 2016 Mar;11(3):324-33
pubmed: 26752676
Mol Biosyst. 2013 Jan 27;9(1):70-6
pubmed: 23104128
Bioinformatics. 2007 Nov 1;23(21):2947-8
pubmed: 17846036
Nature. 2017 Jul 13;547(7662):217-221
pubmed: 28678778
Nature. 2014 Nov 27;515(7528):572-6
pubmed: 25428506
J Clin Invest. 2018 Aug 1;128(8):3209-3218
pubmed: 30067248
Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W509-12
pubmed: 18463140
Bioinformatics. 2008 Jun 1;24(11):1397-8
pubmed: 18413329
Mol Cancer Ther. 2005 Nov;4(11):1645-52
pubmed: 16275985
Nat Rev Gastroenterol Hepatol. 2018 Mar;15(3):135-136
pubmed: 29317775
Nature. 2019 Jan;565(7738):170-171
pubmed: 30622348
JAMA Oncol. 2019 Jul 18;:
pubmed: 31318378
Methods Enzymol. 2003;374:461-91
pubmed: 14696385
Nature. 2019 Jan;565(7738):240-245
pubmed: 30568303
Bioinformatics. 2002 Oct;18(10):1365-73
pubmed: 12376381
Nature. 2016 Aug 4;536(7614):91-5
pubmed: 27350335
J Exp Med. 2004 Aug 2;200(3):297-306
pubmed: 15289501
Sci Rep. 2016 Oct 20;6:35848
pubmed: 27762323
Nucleic Acids Res. 1997 Sep 1;25(17):3389-402
pubmed: 9254694
Proteins. 2010 Jul;78(9):2029-40
pubmed: 20455260
Cell Syst. 2018 Jul 25;7(1):129-132.e4
pubmed: 29960884
Cancer Res. 1984 Feb;44(2):717-26
pubmed: 6692374
Tissue Antigens. 2004 May;63(5):395-400
pubmed: 15104671