Bridging the genotype-phenotype gap for a Mediterranean pine by semi-automatic crown identification and multispectral imagery.
Pinus halepensis
SNPs
genome-wide association study (GWAS)
genomics
remote sensing
unmanned aerial vehicle (UAV)
Journal
The New phytologist
ISSN: 1469-8137
Titre abrégé: New Phytol
Pays: England
ID NLM: 9882884
Informations de publication
Date de publication:
01 2021
01 2021
Historique:
received:
30
01
2020
accepted:
31
07
2020
pubmed:
8
9
2020
medline:
15
5
2021
entrez:
7
9
2020
Statut:
ppublish
Résumé
Progress in high-throughput phenotyping and genomics provides the potential to understand the genetic basis of plant functional differentiation. We developed a semi-automatic methodology based on unmanned aerial vehicle (UAV) imagery for deriving tree-level phenotypes followed by genome-wide association study (GWAS). An RGB-based point cloud was used for tree crown identification in a common garden of Pinus halepensis in Spain. Crowns were combined with multispectral and thermal orthomosaics to retrieve growth traits, vegetation indices and canopy temperature. Thereafter, GWAS was performed to analyse the association between phenotypes and genomic variation at 235 single nucleotide polymorphisms (SNPs). Growth traits were associated with 12 SNPs involved in cellulose and carbohydrate metabolism. Indices related to transpiration and leaf water content were associated with six SNPs involved in stomata dynamics. Indices related to leaf pigments and leaf area were associated with 11 SNPs involved in signalling and peroxisome metabolism. About 16-20% of trait variance was explained by combinations of several SNPs, indicating polygenic control of morpho-physiological traits. Despite a limited availability of markers and individuals, this study is provides a successful proof-of-concept for the combination of high-throughput UAV-based phenotyping with cost-effective genotyping to disentangle the genetic architecture of phenotypic variation in a widespread conifer.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
245-258Informations de copyright
© 2020 The Authors New Phytologist © 2020 New Phytologist Trust.
Références
Baison J, Vidalis A, Zhou L, Chen Z, Li Z, Sillanpä MJ, Bernhardsson C, Scofield D, Forsberg N, Grahn T et al. 2019. Genome-wide association study identified novel candidate loci affecting wood formation in Norway spruce. The Plant Journal 100: 83-100.
Berni J, Zarco-Tejada PJ, Suarez L, Fereres E. 2009. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Transactions on Geoscience and Remote Sensing 47: 722-738.
Bourrat P, Lu Q, Jablonka E. 2017. Why the missing heritability might not be in the DNA. BioEssays 39: 1700067.
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. 2007. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23: 2633-2635.
Chen J, Chen Z. 2008. Extended Bayesian information criteria for model selection with large model spaces. Biometrika 95: 759-771.
Clark SE. 2001. Cell signalling at the shoot meristem. Nature Reviews Molecular Cell Biology 2: 276-284.
Climent J, Prada MA, Calama R, Chambel MR, de Ron DS, Alía R. 2008. To grow or to seed: ecotypic variation in reproductive allocation and cone production by young female Aleppo pine (Pinus halepensis, Pinaceae). American Journal of Botany 95: 833-842.
Daughtry C. 2000. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment 74: 229-239.
De La Torre AR, Birol I, Bousquet J, Ingvarsson PK, Jansson S, Jones SJM, Keeling CI, MacKay J, Nilsson O, Ritland K et al. 2014. Insights into conifer giga-genomes. Plant Physiology 166: 1724-1732.
Du H, Wu N, Fu J, Wang S, Li X, Xiao J, Xiong L. 2012. A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. Journal of Experimental Botany 63: 6467-6480.
Eckert AJ, Bower AD, Wegrzyn JL, Pande B, Jermstad KD, Krutovsky KV, St. Clair JB, Neale DB. 2009. Association genetics of coastal Douglas fir (Pseudotsuga menziesii var. menziesii, Pinaceae). I. Cold-hardiness related traits. Genetics 182: 1289-1302.
Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology 14: 2611-2620.
Filipescu CN, Groot A, MacIsaac DA, Cruickshank MG, Stewart JD. 2012. Prediction of diameter using height and crown attributes: a case study. Western Journal of Applied Forestry 27: 30-35.
Gitelson AA, Merzlyak MN, Chivkunova OB. 2001. Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochemistry and Photobiology 74: 38-45.
Gitelson AA, Zur Y, Chivkunova OB, Merzlyak MN. 2002. Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochemistry and Photobiology 75: 272-281.
González-Dugo V, Zarco-Tejada P, Nicolás E, Nortes PA, Alarcón JJ, Intrigliolo DS, Fereres E. 2013. Using high resolution UAV thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard. Precision Agriculture 14: 660-678.
Grattapaglia D, Plomion C, Kirst M, Sederoff RR. 2009. Genomics of growth traits in forest trees. Current Opinion in Plant Biology 12: 148-156.
Grattapaglia D, Resende MDV. 2011. Genomic selection in forest tree breeding. Tree Genetics & Genomes 7: 241-255.
Großkinsky DK, Svensgaard J, Christensen S, Roitsch T. 2015. Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap. Journal of Experimental Botany 66: 5429-5440.
Haboudane D, Miller JR, Tremblay N, Zarco-Tejada PJ, Dextraze L. 2002. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment 81: 416-426.
Hardy O, Vekemans X. 2015. SPAGeDi 1.5. a program for spatial pattern analysis of genetic diversity. Brussells, Belgium: Université Libre de Bruxelles.
Havaux M. 2014. Carotenoid oxidation products as stress signals in plants. The Plant Journal 79: 597-606.
Horiguchi G, Ferjani A, Fujikura U, Tsukaya H. 2006. Coordination of cell proliferation and cell expansion in the control of leaf size in Arabidopsis thaliana. Journal of Plant Research 119: 37-42.
Houle D, Govindaraju DR, Omholt S. 2010. Phenomics: the next challenge. Nature Reviews Genetics 11: 855-866.
Hu J, Aguirre M, Peto C, Alonso J, Ecker J, Chory J. 2002. A role for peroxisomes in photomorphogenesis and development of Arabidopsis. Science 297: 405-409.
Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment 83: 195-213.
Jakobsson M, Rosenberg NA. 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23: 1801-1806.
Jaramillo-Correa JP, Prunier J, Vázquez-Lobo A, Keller SR, Moreno-Letelier A. 2015. Molecular signatures of adaptation and selection in forest trees. Advances in Botanical Research 74: 265-306.
Kaur N, Li J, Hu J. 2013. Peroxisomes and photomorphogenesis. In: Luis A, Rio D, eds. Peroxisomes and their key role in cellular signaling and metabolism. Dordrecht, the Netherlands: Springer, 195-211.
Keller R, Renz FSA, Kossmann J. 1999. Antisense inhibition of the GDP-mannose pyrophosphorylase reduces the ascorbate content in transgenic plants leading to developmental changes during senescence. The Plant Journal 19: 131-141.
Khan MA, Korban SS. 2012. Association mapping in forest trees and fruit crops. Journal of Experimental Botany 63: 4045-4060.
Klein T, Di Matteo G, Rotenberg E, Cohen S, Yakir D. 2013. Differential ecophysiological response of a major Mediterranean pine species across a climatic gradient. Tree Physiology 33: 26-36.
Li W, Yang Z, Yao J, Li J, Song W, Yang X. 2018. Cellulose synthase-like D1 controls organ size in maize. BMC Plant Biology 18: 239.
Lobos GA, Camargo AV, del Pozo A, Araus JL, Ortiz R, Doonan JH. 2017. Editorial: plant phenotyping and phenomics for plant preeding. Frontiers in Plant Science 8: 2181.
Lockhart BR, Weih RC, Smith KM. 2005. Crown radius and diameter at breast height relationships for six bottomland hardwood species. Journal of the Arkansas Academy of Science 59: 110-115.
Loiselle BA, Sork VL, Nason J, Graham C. 1995. Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). American Journal of Botany 82: 1420-1425.
Ludovisi R, Tauro F, Salvati R, Khoury S, Mugnozza Scarascia G, Harfouche A. 2017. UAV-based thermal imaging for high-throughput field phenotyping of black poplar response to drought. Frontiers in Plant Science 8: 1681.
Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ et al. 2009. Finding the missing heritability of complex diseases. Nature 461: 747-753.
McGaughey RJ. 2012. FUSION/LDV: Software for LiDAR data analysis and visualization-V3. 10. Portland, OR, USA: USDA Forest Service, Pacific Northwest Research Station.
McKown AD, Klápště J, Guy RD, Geraldes A, Porth I, Hannemann J, Friedmann M, Muchero W, Tuskan GA, Ehlting J et al. 2014. Genome-wide association implicates numerous genes underlying ecological trait variation in natural populations of Populus trichocarpa. New Phytologist 203: 535-553.
Meyer F, Beucher S. 1990. Morphological segmentation. Journal of Visual Communication and Image Representation 1: 21-46.
Nevalainen O, Honkavaara E, Tuominen S, Viljanen N, Hakala T, Yu X, Hyyppa J, Saari H, PolonenI, ImaiNN et al. 2017. Individual tree detection and classification with UAV-based photogrammetric point clouds and hyperspectral imaging. Remote Sensing 9: 185.
Peakall R, Smouse PE. 2006. Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6: 288-295.
Peñuelas J, Filella I, Biel C, Serrano L, Save R. 1993. The reflectance at the 950-970 nm region as an indicator of plant water status. International Journal of Remote Sensing 14: 1887-1905.
Perdiguero P, del Carmen Barbero M, Cervera MT, Collada C. 2013. Molecular response to water stress in two contrasting Mediterranean pines (Pinus pinaster and Pinus pinea). Plant Physiology and Biochemistry 67: 199-208.
Pinosio S, González-Martínez SC, Bagnoli F, Cattonaro F, Grivet D, Marroni F, Lorenzo Z, Pausas JG, Verdú M, Vendramin GG. 2014. First insights into the transcriptome and development of new genomic tools of a widespread circum-Mediterranean tree species, Pinus halepensis Mill. Molecular Ecology Resources 14: 846-856.
Plomion C, Bartholomé J, Lesur I, Boury C, Rodríguez-Quilón I, Lagraulet H, Ehrenmann F, Bouffier L, Gion JM, Grivet D et al. 2016. High-density SNP assay development for genetic analysis in maritime pine (Pinus pinaster). Molecular Ecology Resources 16: 574-587.
Plowright A. 2018. Foresttools: analyzing remotely sensed forest data. R package v.0.2.0 [WWW document] URL https://cran.r-project.org/web/packages/ForestTools/index.html.
Popescu SC, Wynne RH. 2004. Seeing the trees in the forest. Photogrammetric Engineering & Remote Sensing 70: 589-604.
Pretzsch H, Biber P, Uhl E, Dahlhausen J, Rötzer T, Caldentey J et al. 2015. Crown size and growing space requirement of common tree species in urban centres, parks, and forests. Urban Forestry & Urban Greening 14: 466-479.
Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945-959.
Prunier J, Pelgas B, Gagnon F, Desponts M, Isabel N, Beaulieu J, Bousquet J. 2013. The genomic architecture and association genetics of adaptive characters using a candidate SNP approach in boreal black spruce. BMC Genomics 14: 368.
QGIS Development Team. 2019. QGIS geographic information system. Open Source Geospatial Foundation Project. [WWW document] URL http://qgis.osgeo.org/ [accessed 20 January 2020].
R Core Team. 2019. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing [WWW document] URL https://www.R-project.org/ [accessed 20 January 2020].
Resende RT, Resende MDV, Silva FF, Azevedo CF, Takahashi EK, Silva-Junior OB, Grattapaglia D. 2017. Regional heritability mapping and genome-wide association identify loci for complex growth, wood and disease resistance traits in Eucalyptus. New Phytologist 213: 1287-1300.
Richmond TA, Somerville CR. 2000. The cellulose synthase superfamily. Plant Physiology 124: 495-498.
Roberts DA, Roth KL, Perroy RL. 2016. Hyperspectral vegetation indices. In: Huete A, Lyon JG, Thenkabail PS, eds. Hyperspectral remote sensing of vegetation. Boca Raton, FL, USA: CRC Press, 309-328.
Rodríguez Quilón I 2017. Ecological and association genetics in two Mediterranean pine species. PhD thesis, Universitad Politécnica de Madrid, Madrid, Spain.
Romeis T. 2001. Calcium-dependent protein kinases play an essential role in a plant defence response. EMBO Journal 20: 5556-5567.
Rondeaux G, Steven M, Baret F. 1996. Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment 55: 95-107.
Roujean J-L, Breon F-M. 1995. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment 51: 375-384.
Rouse J, Haas RH, Schell JA, Deering DW. 1974. Monitoring vegetation systems in the Great Plains with ERTS. NASA Special Publication 351: 309.
Roussel JR, Auty D. 2018. lidR: airborne LiDAR data manipulation and visualization for forestry applications. R package v.1.0.0 [WWW document} URL https://rdrr.io/cran/lidR/.
Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large datasets. Molecular Biology and Evolution 34: 3299-3302.
Rui Y, Xiao C, Yi H, Kandemir B, Wang JZ, Puri VM, Anderson CT. 2017. Polygalacturonase involved in expansion3 functions in seedling development, rosette growth, and stomatal dynamics in Arabidopsis thaliana. The Plant Cell 29: 2413-2432.
Ruiz Daniels R, Taylor RS, González-Martínez SC, Vendramin GG, Fady B, Oddou-Muratorio S, Piotti A, Simioni G, Grivet D, Beaumont MA. 2019. Looking for local adaptation: convergent microevolution in Aleppo Pine (Pinus halepensis). Genes 10: 673.
Ruiz Daniels R, Taylor RS, Serra-Varela MJ, Vendramin GG, González-Martínez SC, Grivet D. 2018. Inferring selection in instances of long-range colonization: the Aleppo pine (Pinus halepensis) in the Mediterranean Basin. Molecular Ecology 27: 3331-3345.
Santini F, Kefauver SC, Resco de Dios V, Araus JL, Voltas J. 2019a. Using unmanned aerial vehicle-based multispectral, RGB and thermal imagery for phenotyping of forest genetic trials: a case study in Pinus halepensis. Annals of Applied Biology 174: 262-276.
Santini F, Serrano L, Kefauver SC, Abdullah-Al M, Aguilera M, Sin E, Voltas J. 2019b. Morpho-physiological variability of Pinus nigra populations reveals climate-driven local adaptation but weak water use differentiation. Environmental and Experimental Botany 166: 103828.
Savolainen O, Pyhäjärvi T, Knürr T. 2007. Gene flow and local adaptation in trees. Annual Review of Ecology, Evolution and Systematics 38: 595-619.
Scharf KD, Berberich T, Ebersberger I, Nover L. 2012. The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1819: 104-119.
Schiller G, Atzmon N. 2009. Performance of Aleppo pine (Pinus halepensis) provenances grown at the edge of the Negev desert: a review. Journal of Arid Environments 73: 1051-1057.
Segura V, Vilhjálmsson BJ, Platt A, Korte A, Seren Ü, Long Q, Nordborg M. 2012. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nature Genetics 44: 825.
Serra-Varela MJ, Alía R, Daniels RR, Zimmermann NE, Gonzalo-Jiménez J, Grivet D. 2017. Assessing vulnerability of two Mediterranean conifers to support genetic conservation management in the face of climate change. Diversity and Distributions 23: 507-516.
Storey JD, Bass AJ, Dabney A, Robinson D. 2019. qvalue: Q-value estimation for false discovery rate control. R package v.2.16.0 [WWW document] URL https://rpubs.com/jmr1990/eiccqvalue.
Storey JD, Tibshirani R. 2003. Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences, USA 100: 9440-9445.
Su L, Diretto G, Purgatto E, Danoun S, Zouine M, Li Z, Roustan JP, Bouzayen M, Giuliano G, Chervin C. 2015. Carotenoid accumulation during tomato fruit ripening is modulated by the auxin-ethylene balance. BMC Plant Biology 15: 114.
Tognetti R, Michelozzi M, Giovannelli A. 1997. Geographical variation in water relations, hydraulic architecture and terpene composition of Aleppo pine seedlings from Italian provinces. Tree Physiology 17: 241-250.
Trerotola M, Relli V, Simeone P, Alberti S. 2015. Epigenetic inheritance and the missing heritability. Human Genomics 9: 17.
Van den Ende W, El-Esawe SK. 2014. Sucrose signaling pathways leading to fructan and anthocyanin accumulation: a dual function in abiotic and biotic stress responses? Environmental and Experimental Botany 108: 4-13.
de Villemereuil P, Gaggiotti OE, Mouterde M, Till-Bottraud I. 2016. Common garden experiments in the genomic era: new perspectives and opportunities. Heredity 116: 249-254.
Voltas J, Chambel MR, Prada MA, Ferrio JP. 2008. Climate-related variability in carbon and oxygen stable isotopes among populations of Aleppo pine grown in common-garden tests. Trees 22: 759-769.
Voltas J, Lucabaugh D, Chambel MR, Ferrio JP. 2015. Intraspecific variation in the use of water sources by the circum-Mediterranean conifer Pinus halepensis. New Phytologist 208: 1031-1041.
Voltas J, Shestakova TA, Patsiou T, di Matteo G, Klein T. 2018. Ecotypic variation and stability in growth performance of the thermophilic conifer Pinus halepensis across the Mediterranean basin. Forest Ecology and Management 424: 205-215.
Wallace L, Lucieer A, Malenovský Z, Turner D, Vopěnka P. 2016. Assessment of forest structure using two uav techniques: a comparison of airborne laser scanning and structure from motion (SfM) point clouds. Forests 7: 62.
Weiss M, Baret F. 2017. Using 3D point clouds derived from UAV RGB imagery to describe vineyard 3D macro-structure. Remote Sensing 9: 111.
White TL, Adams WT, Neale DB. 2007. Forest genetics. Cambridge, MA, USA: CABI.
Wu R, Zeng ZB, McKeand SE, OMalley DM. 2000. The case for molecular mapping in forest tree breeding. Plant Breeding Reviews 19: 41-68.
Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB et al. 2006. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics 38: 203-208.
Zarco-Tejada PJ, Diaz-Varela R, Angileri V, Loudjani P. 2014. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. European Journal of Agronomy 55: 89-99.
Zarco-Tejada PJ, Miller JR, Morales A, Berjón A, Agüera J. 2004. Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops. Remote Sensing of Environment 90: 463-476.