Fonio millet genome unlocks African orphan crop diversity for agriculture in a changing climate.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
08 09 2020
Historique:
received: 13 04 2020
accepted: 16 08 2020
entrez: 9 9 2020
pubmed: 10 9 2020
medline: 22 9 2020
Statut: epublish

Résumé

Sustainable food production in the context of climate change necessitates diversification of agriculture and a more efficient utilization of plant genetic resources. Fonio millet (Digitaria exilis) is an orphan African cereal crop with a great potential for dryland agriculture. Here, we establish high-quality genomic resources to facilitate fonio improvement through molecular breeding. These include a chromosome-scale reference assembly and deep re-sequencing of 183 cultivated and wild Digitaria accessions, enabling insights into genetic diversity, population structure, and domestication. Fonio diversity is shaped by climatic, geographic, and ethnolinguistic factors. Two genes associated with seed size and shattering showed signatures of selection. Most known domestication genes from other cereal models however have not experienced strong selection in fonio, providing direct targets to rapidly improve this crop for agriculture in hot and dry environments.

Identifiants

pubmed: 32901040
doi: 10.1038/s41467-020-18329-4
pii: 10.1038/s41467-020-18329-4
pmc: PMC7479619
doi:

Banques de données

Dryad
['10.5061/dryad.2v6wwpzj0']

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

4488

Références

Hickey, L. T. et al. Breeding crops to feed 10 billion. Nat. Biotechnol. 37, 744–754 (2019).
pubmed: 31209375
Tena, G. Sequencing forgotten crops. Nat. Plants 5, 5 (2019).
pubmed: 30626921 doi: 10.1038/s41477-018-0354-z
National Academies of Sciences Engineering and Medicine. Breakthroughs to Advance Food and Agricultural Research by 2030 (The National Academies Press, Washington, 2019).
FAO. The State of Agricultural Commodity Markets 2018. Agricultural Trade, Climate Change and Food Security (FAO, Rome, 2018).
Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700–704 (2017).
pubmed: 28358074 pmcid: 7427584 doi: 10.1038/nature21403
Fernie, A. R. & Yan, J. De novo domestication: an alternative route toward new crops for the future. Mol. Plant 12, 615–631 (2019).
pubmed: 30999078 doi: 10.1016/j.molp.2019.03.016
Tanksley, S. D. & McCouch, S. R. Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277, 1063–1066 (1997).
pubmed: 9262467 doi: 10.1126/science.277.5329.1063
Gruber, K. Agrobiodiversity: the living library. Nature 544, S8–S10 (2017).
pubmed: 28445449 doi: 10.1038/544S8a
Kistler, L. et al. Multiproxy evidence highlights a complex evolutionary legacy of maize in South America. Science 362, 1309–1313 (2018).
pubmed: 30545889 doi: 10.1126/science.aav0207
Wing, R. A., Purugganan, M. D. & Zhang, Q. F. The rice genome revolution: from an ancient grain to Green Super Rice. Nat. Rev. Genet. 19, 505–517 (2018).
pubmed: 29872215
Eshed, Y. & Lippman, Z. B. Revolutions in agriculture chart a course for targeted breeding of old and new crops. Science 366, eaax0025 (2019).
pubmed: 31488704 doi: 10.1126/science.aax0025
Kantar, M. B. & Runck, B. Take a walk on the wild side. Nat. Clim. Change 9, 731–732 (2019).
doi: 10.1038/s41558-019-0581-y
Dawson, I. K. et al. The role of genetics in mainstreaming the production of new and orphan crops to diversify food systems and support human nutrition. New Phytol. 224, 37–54 (2019).
pubmed: 31063598 doi: 10.1111/nph.15895
Pironon, S. et al. Potential adaptive strategies for 29 sub-Saharan crops under future climate change. Nat. Clim. Change 9, 758–763 (2019).
doi: 10.1038/s41558-019-0585-7
Wallace, J. G., Rodgers-Melnick, E. & Buckler, E. S. On the road to breeding 4.0: unraveling the good, the bad, and the boring of crop quantitative genomics. Annu. Rev. Genet. 52, 421–444 (2018).
pubmed: 30285496 doi: 10.1146/annurev-genet-120116-024846
Chen, K., Wang, Y., Zhang, R., Zhang, H. & Gao, C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 70, 667–697 (2019).
pubmed: 30835493 doi: 10.1146/annurev-arplant-050718-100049
Barnaud, A. et al. High selfing rate inferred for white fonio [Digitaria exilis (Kippist.) Stapf] reproductive system opens up opportunities for breeding programs. Genet. Resour. Crop Evol. 64, 1485–1490 (2017).
doi: 10.1007/s10722-017-0515-3
Ayenan, M. A. T., Sodedji, K. A. F., Nwankwo, C. I., Olodo, K. F. & Alladassi, M. E. B. Harnessing genetic resources and progress in plant genomics for fonio (Digitaria spp.) improvement. Genet. Resour. Crop Evol. 65, 373–386 (2018).
doi: 10.1007/s10722-017-0565-6
Cruz, J. F. & Beavogui, F. Fonio, an African Cereal (CIRAD, France, 2016).
Adoukonou-Sagbadja, H., Wagner, C., Ordon, F. & Friedt, W. Reproductive system and molecular phylogenetic relationships of fonio millets (Digitaria spp., Poaceae) with some polyploid wild relatives. Trop. Plant Biol. 3, 240–251 (2010).
doi: 10.1007/s12042-010-9063-0
Abdul, S. D. & Jideani, A. I. O. Fonio (Digitaria spp.) breeding. In Advances in Plant Breeding Strategies: Cereals (eds Al-Khayri, J. M., Jain, S. M. & Johnson, D. V.) 47–81 (Springer, 2019).
Adoukonou-Sagbadja, H. et al. Flow cytometric analysis reveals different nuclear DNA contents in cultivated Fonio (Digitaria spp.) and some wild relatives from West-Africa. Plant Syst. Evol. 267, 163–176 (2007).
doi: 10.1007/s00606-007-0552-z
Avni, R. et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357, 93–97 (2017).
pubmed: 28684525 doi: 10.1126/science.aan0032
Edger, P. P. et al. Origin and evolution of the octoploid strawberry genome. Nat. Genet. 51, 541–547 (2019).
pubmed: 30804557 pmcid: 6882729 doi: 10.1038/s41588-019-0356-4
Springer, N. M. et al. The maize W22 genome provides a foundation for functional genomics and transposon biology. Nat. Genet. 50, 1282–1288 (2018).
pubmed: 30061736 doi: 10.1038/s41588-018-0158-0
Han, Y. H., Zhang, T., Thammapichai, P., Weng, Y. Q. & Jiang, J. M. Chromosome-specific painting in Cucumis species using bulked oligonucleotides. Genetics 200, 771–779 (2015).
pubmed: 25971668 pmcid: 4512542 doi: 10.1534/genetics.115.177642
Monat, C. et al. TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools. Genome Biol. 20, 284 (2019).
pubmed: 31849336 pmcid: 6918601 doi: 10.1186/s13059-019-1899-5
Bennetzen, J. L. et al. Reference genome sequence of the model plant Setaria. Nat. Biotechnol. 30, 555–561 (2012).
pubmed: 22580951 doi: 10.1038/nbt.2196
Tang, H. Disentangling a polyploid genome. Nat. Plants 3, 688–689 (2017).
pubmed: 28827641 doi: 10.1038/s41477-017-0001-0
Suguiyama, V. F., Vasconcelos, L. A. B., Rossi, M. M., Biondo, C. & de Setta, N. The population genetic structure approach adds new insights into the evolution of plant LTR retrotransposon lineages. PLoS ONE 14, e0214542 (2019).
pubmed: 31107873 pmcid: 6527191 doi: 10.1371/journal.pone.0214542
International Wheat Genome Sequencing Consortium. Shifting the limits in wheat research and breeding through a fully annotated and anchored reference genome sequence. Science 361, eaar7191 (2018).
doi: 10.1126/science.aar7191
Ramirez-Gonzalez, R. H. et al. The transcriptional landscape of polyploid wheat. Science 361, eaar6089 (2018).
pubmed: 30115782 doi: 10.1126/science.aar6089
Bird, K. A., VanBuren, R., Puzey, J. R. & Edger, P. P. The causes and consequences of subgenome dominance in hybrids and recent polyploids. New Phytol. 220, 87–93 (2018).
pubmed: 29882360 doi: 10.1111/nph.15256
Schnable, J. C., Springer, N. M. & Freeling, M. Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc. Natl Acad. Sci. USA 108, 4069–4074 (2011).
pubmed: 21368132 doi: 10.1073/pnas.1101368108 pmcid: 3053962
Shi, J. P. et al. Chromosome conformation capture resolved near complete genome assembly of broomcorn millet. Nat. Commun. 10, 464 (2019).
pubmed: 30683940 pmcid: 6347627 doi: 10.1038/s41467-018-07876-6
Clément, J. & Leblanc, J. M. Collecte IBPGR-ORSTOM de 1977 au Togo (Catalogue ORSTOM, 1984).
Ramu, P. et al. Cassava haplotype map highlights fixation of deleterious mutations during clonal propagation. Nat. Genet. 49, 959–963 (2017).
pubmed: 28416819 doi: 10.1038/ng.3845
Patwari, P. et al. Surface wax esters contribute to drought tolerance in Arabidopsis. Plant J. 98, 727–744 (2019).
pubmed: 30729606 doi: 10.1111/tpj.14269
Pavlidis, P., Zivkovic, D., Stamatakis, A. & Alachiotis, N. SweeD: Likelihood-based detection of selective sweeps in thousands of genomes. Mol. Biol. Evol. 30, 2224–2234 (2013).
pubmed: 23777627 pmcid: 3748355 doi: 10.1093/molbev/mst112
Li, Y. et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat. Genet. 43, 1266–1269 (2011).
pubmed: 22019783 doi: 10.1038/ng.977
Lin, Z. W. et al. Parallel domestication of the Shattering1 genes in cereals. Nat. Genet. 44, 720–724 (2012).
pubmed: 22581231 pmcid: 3532051 doi: 10.1038/ng.2281
Wang, M. H. et al. The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication. Nat. Genet. 46, 982–988 (2014).
pubmed: 25064006 pmcid: 7036042 doi: 10.1038/ng.3044
VanBuren, R. et al. Exceptional subgenome stability and functional divergence in the allotetraploid Ethiopian cereal teff. Nat. Commun. 11, 884 (2020).
pubmed: 32060277 pmcid: 7021729 doi: 10.1038/s41467-020-14724-z
Cubry, P. et al. The rise and fall of African rice cultivation revealed by analysis of 246 new genomes. Curr. Biol. 28, 2274–2282 (2018).
pubmed: 29983312 doi: 10.1016/j.cub.2018.05.066
Liang, Z. et al. Whole-genome resequencing of 472 Vitis accessions for grapevine diversity and demographic history analyses. Nat. Commun. 10, 1190 (2019).
pubmed: 30867414 pmcid: 6416300 doi: 10.1038/s41467-019-09135-8
Blench, R. M. Vernacular names for African millets and other minor cereals and their significance for agricultural history. Archaeol. Anthropol. Sci. 8, 1–8 (2016).
doi: 10.1007/s12520-012-0104-5
Adoukonou-Sagbadja, H., Dansi, A., Vodouhe, R. & Akpagana, K. Collecting fonio (Digitaria exilis Kipp. Stapf, D. iburua Stapf) landraces in Togo. Plant Genet. Resour. Newsl. 139, 63–67 (2004).
Meyer, R. S. & Purugganan, M. D. Evolution of crop species: genetics of domestication and diversification. Nat. Rev. Genet. 14, 840–852 (2013).
pubmed: 24240513 doi: 10.1038/nrg3605
Barnaud, A. et al. Development of nuclear microsatellite markers for the fonio, Digitaria exilis (Poaceae), an understudied West African cereal. Am. J. Bot. 99, E105–E107 (2012).
pubmed: 22358046 doi: 10.3732/ajb.1100423
Doležel, J., Greilhuber, J. & Suda, J. Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2, 2233–2244 (2007).
pubmed: 17853881 doi: 10.1038/nprot.2007.310
Doležel, J., Bartoš, J., Voglmayr, H. & Greilhuber, J. Nuclear DNA content and genome size of trout and human. Cytometry 51A, 127–128 (2003).
doi: 10.1002/cyto.a.10013
Jackman, S. D. et al. Tigmint: correcting assembly errors using linked reads from large molecules. BMC Bioinforma. 19, 393 (2018).
doi: 10.1186/s12859-018-2425-6
Coombe, L. et al. ARKS: chromosome-scale scaffolding of human genome drafts with linked read kmers. BMC Bioinforma. 19, 234 (2018).
doi: 10.1186/s12859-018-2243-x
Warren, R. L. et al. LINKS: scalable, alignment-free scaffolding of draft genomes with long reads. GigaScience 4, 35 (2015).
pubmed: 26244089 pmcid: 4524009 doi: 10.1186/s13742-015-0076-3
Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).
pubmed: 20080505 pmcid: 2828108 doi: 10.1093/bioinformatics/btp698
Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).
pubmed: 28336562 pmcid: 5635820 doi: 10.1126/science.aal3327
Novak, P., Neumann, P., Pech, J., Steinhaisl, J. & Macas, J. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29, 792–793 (2013).
pubmed: 23376349 doi: 10.1093/bioinformatics/btt054
Untergasser, A. et al. Primer3–new capabilities and interfaces. Nucleic Acids Res. 40, e115 (2012).
pubmed: 22730293 pmcid: 3424584 doi: 10.1093/nar/gks596
Šimoníková, D. et al. Chromosome painting facilitates anchoring reference genome sequence to chromosomes in situ and integrated karyotyping in banana (Musa Spp.). Front. Plant Sci. 10, 1503 (2019).
pubmed: 31824534 pmcid: 6879668 doi: 10.3389/fpls.2019.01503
Ellinghaus, D., Kurtz, S. & Willhoeft, U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinforma. 9, 18 (2008).
doi: 10.1186/1471-2105-9-18
Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, W265–W268 (2007).
pubmed: 17485477 pmcid: 1933203 doi: 10.1093/nar/gkm286
Ou, S. J. & Jiang, N. LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol. 176, 1410–1422 (2018).
pubmed: 29233850 doi: 10.1104/pp.17.01310
James, B. T., Luczak, B. B. & Girgis, H. Z. MeShClust: an intelligent tool for clustering DNA sequences. Nucleic Acids Res. 46, e83 (2018).
pubmed: 29718317 pmcid: 6101578 doi: 10.1093/nar/gky315
Sonnhammer, E. L. & Durbin, R. A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 167, GC1–GC10 (1995).
pubmed: 8566757 doi: 10.1016/0378-1119(95)00714-8
Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).
pubmed: 21988835 pmcid: 3261699 doi: 10.1038/msb.2011.75
Knaus, B. J. & Grunwald, N. J. VCFR: a package to manipulate and visualize variant call format data in R. Mol. Ecol. Resour. 17, 44–53 (2017).
pubmed: 27401132 doi: 10.1111/1755-0998.12549
Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).
pubmed: 18397895 doi: 10.1093/bioinformatics/btn129
Wickham, H. ggplot2 - Elegant Graphics for Data Analysis (Springer International Publishing, 2016).
Ma, J. X. & Bennetzen, J. L. Rapid recent growth and divergence of rice nuclear genomes. Proc. Natl Acad. Sci. USA 101, 12404–12410 (2004).
pubmed: 15240870 doi: 10.1073/pnas.0403715101 pmcid: 515075
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
pubmed: 20709691
Cantarel, B. L. et al. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 18, 188–196 (2008).
pubmed: 18025269 pmcid: 2134774 doi: 10.1101/gr.6743907
Kopylova, E., Noe, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).
pubmed: 23071270 doi: 10.1093/bioinformatics/bts611
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404 pmcid: 4103590 doi: 10.1093/bioinformatics/btu170
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
doi: 10.1093/bioinformatics/bts635 pubmed: 23104886
Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).
pubmed: 25690850 pmcid: 4643835 doi: 10.1038/nbt.3122
The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).
doi: 10.1038/35048692
Paterson, A. H. et al. The Sorghum bicolor genome and the diversification of grasses. Nature 457, 551–556 (2009).
pubmed: 19189423 doi: 10.1038/nature07723
Schnable, P. S. et al. The B73 maize genome: complexity, diversity, and dynamics. Science 326, 1112–1115 (2009).
pubmed: 19965430 doi: 10.1126/science.1178534
International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature 436, 793–800 (2005).
doi: 10.1038/nature03895
Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).
pubmed: 9254694 pmcid: 146917 doi: 10.1093/nar/25.17.3389
Slater, G. S. & Birney, E. Automated generation of heuristics for biological sequence comparison. BMC Bioinforma. 6, 31 (2005).
doi: 10.1186/1471-2105-6-31
Borodovsky, M. & Lomsadze, A. Eukaryotic gene prediction using GeneMark.hmm-E and GeneMark-ES. Curr. Protoc. Bioinforma. 35, 4.6.1–4.6.10 (2011).
doi: 10.1002/0471250953.bi0406s35
Korf, I. Gene finding in novel genomes. BMC Bioinforma. 5, 59 (2004).
doi: 10.1186/1471-2105-5-59
Stanke, M. & Waack, S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19, ii215–ii225 (2003).
pubmed: 14534192 doi: 10.1093/bioinformatics/btg1080
Lovell, J. T. et al. The genomic landscape of molecular responses to natural drought stress in Panicum hallii. Nat. Commun. 9, 5213 (2018).
pubmed: 30523281 pmcid: 6283873 doi: 10.1038/s41467-018-07669-x
The International Brachypodium Initiative. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463, 763–768 (2010).
doi: 10.1038/nature08747
Mascher, M. et al. A chromosome conformation capture ordered sequence of the barley genome. Nature 544, 427–433 (2017).
pubmed: 28447635 doi: 10.1038/nature22043
Luo, M. C. et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551, 498–502 (2017).
pubmed: 29143815 pmcid: 7416625 doi: 10.1038/nature24486
Wang, Y. P. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49 (2012).
pubmed: 22217600 pmcid: 3326336 doi: 10.1093/nar/gkr1293
Thompson, J. D., Higgins, D. G. & Gibson, T. J. Clustal-W - Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).
pubmed: 7984417 pmcid: 308517 doi: 10.1093/nar/22.22.4673
Yang, Z. H. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).
pubmed: 17483113 doi: 10.1093/molbev/msm088
Gaut, B. S., Morton, B. R., McCaig, B. C. & Clegg, M. T. Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc. Natl Acad. Sci. USA 93, 10274–10279 (1996).
doi: 10.1073/pnas.93.19.10274 pubmed: 8816790 pmcid: 38374
Hu, F., Lin, Y. & Tang, J. MLGO: phylogeny reconstruction and ancestral inference from gene-order data. BMC Bioinforma. 15, 354 (2014).
doi: 10.1186/s12859-014-0354-6
Ren, L., Huang, W. & Cannon, S. B. Reconstruction of ancestral genome reveals chromosome evolution history for selected legume species. New Phytol. 223, 2090–2103 (2019).
pubmed: 30834536 doi: 10.1111/nph.15770
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma. 12, 323 (2011).
doi: 10.1186/1471-2105-12-323
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943 pmcid: 2723002 doi: 10.1093/bioinformatics/btp352
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
pubmed: 20644199 pmcid: 2928508 doi: 10.1101/gr.107524.110
Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinforma. 43, 11 10 1-11 10 33 (2013).
doi: 10.1002/0471250953.bi1110s43
Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).
pubmed: 21653522 pmcid: 3137218 doi: 10.1093/bioinformatics/btr330
Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w(1118); iso-2; iso-3. Fly 6, 80–92 (2012).
pubmed: 22728672 pmcid: 3679285 doi: 10.4161/fly.19695
Frichot, E. & Francois, O. LEA: an R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929 (2015).
doi: 10.1111/2041-210X.12382
Nychka, D., Furrer, R., Paige, J. & Sain, S. fields: Tools for Spatial Data. Retrieved from https://cran.r-project.org/package=fields (2017).
Cubry, P., Vigouroux, Y. & Francois, O. The empirical distribution of singletons for geographic samples of DNA sequences. Front. Genet. 8, 139 (2017).
pubmed: 29033977 pmcid: 5627571 doi: 10.3389/fgene.2017.00139
Zhang, C., Dong, S. S., Xu, J. Y., He, W. M. & Yang, T. L. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 35, 1786–1788 (2019).
pubmed: 30321304 doi: 10.1093/bioinformatics/bty875
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
doi: 10.1002/joc.1276
Cubry, P. et al. Genome wide association study pinpoints key agronomic QTLs in African rice Oryza glaberrima. Preprint at https://doi.org/10.1101/2020.01.07.897298 (2020).
Kang, H. M. et al. Efficient control of population structure in model organism association mapping. Genetics 178, 1709–1723 (2008).
pubmed: 18385116 pmcid: 2278096 doi: 10.1534/genetics.107.080101
Lipka, A. E. et al. GAPIT: genome association and prediction integrated tool. Bioinformatics 28, 2397–2399 (2012).
doi: 10.1093/bioinformatics/bts444 pubmed: 22796960
Caye, K., Jumentier, B., Lepeule, J. & Francois, O. LFMM 2: fast and accurate inference of gene-environment associations in genome-wide studies. Mol. Biol. Evol. 36, 852–860 (2019).
pubmed: 30657943 pmcid: 6659841 doi: 10.1093/molbev/msz008
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. (Methdol.) 57, 289–300 (1995).
Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
pubmed: 17701901 pmcid: 1950838 doi: 10.1086/519795
Turner, S. D. qqman: an R package for visualizing GWAS results usingQ-Q and Manhattan plots. J. Open Source Softw. 3, 731 (2018).
doi: 10.21105/joss.00731
Kulmanov, M. & Hoehndorf, R. DeepGOPlus: improved protein function prediction from sequence. Bioinformatics 36, 422–429 (2020).
pubmed: 31350877
Alexa, A., Rahnenfuhrer, J. & Lengauer, T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22, 1600–1607 (2006).
pubmed: 16606683 doi: 10.1093/bioinformatics/btl140
Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).
pubmed: 21753753 pmcid: 3154645 doi: 10.1038/nature10231
Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 46, 919–925 (2014).
pubmed: 24952747 pmcid: 4116295 doi: 10.1038/ng.3015
Terhorst, J., Kamm, J. A. & Song, Y. S. Robust and scalable inference of population history froth hundreds of unphased whole genomes. Nat. Genet. 49, 303–309 (2017).
pubmed: 28024154 doi: 10.1038/ng.3748
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278 pmcid: 2832824 doi: 10.1093/bioinformatics/btq033
Julkowska, M. M. et al. MVApp-Multivariate analysis application for streamlined data analysis and curation. Plant Physiol. 180, 1261–1276 (2019).
pubmed: 31061104 pmcid: 6752927 doi: 10.1104/pp.19.00235

Auteurs

Michael Abrouk (M)

Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.

Hanin Ibrahim Ahmed (HI)

Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.

Philippe Cubry (P)

DIADE, Univ Montpellier, IRD, Montpellier, France.

Denisa Šimoníková (D)

Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czech Republic.

Stéphane Cauet (S)

CNRGV Plant Genomics Center, INRAE, Toulouse, France.

Yveline Pailles (Y)

Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.

Jan Bettgenhaeuser (J)

Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.

Liubov Gapa (L)

Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.

Nora Scarcelli (N)

DIADE, Univ Montpellier, IRD, Montpellier, France.

Marie Couderc (M)

DIADE, Univ Montpellier, IRD, Montpellier, France.

Leila Zekraoui (L)

DIADE, Univ Montpellier, IRD, Montpellier, France.

Nagarajan Kathiresan (N)

Supercomputing Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.

Jana Čížková (J)

Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czech Republic.

Eva Hřibová (E)

Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czech Republic.

Jaroslav Doležel (J)

Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czech Republic.

Sandrine Arribat (S)

CNRGV Plant Genomics Center, INRAE, Toulouse, France.

Hélène Bergès (H)

CNRGV Plant Genomics Center, INRAE, Toulouse, France.
Inari Agriculture, One Kendall Square Building 600/700, Cambridge, MA, 02139, USA.

Jan J Wieringa (JJ)

Naturalis Biodiversity Center, Leiden, the Netherlands.

Mathieu Gueye (M)

Laboratoire de Botanique, Département de Botanique et Géologie, IFAN Ch. A. Diop/UCAD, Dakar, Senegal.

Ndjido A Kane (NA)

Senegalese Agricultural Research Institute, Dakar, Senegal.
Laboratoire Mixte International LAPSE, Dakar, Senegal.

Christian Leclerc (C)

CIRAD, UMR AGAP, Montpellier, France.
AGAP, Université de Montpellier, Cirad, INRAE, Institut Agro, Montpellier, France.

Sandrine Causse (S)

CIRAD, UMR AGAP, Montpellier, France.
AGAP, Université de Montpellier, Cirad, INRAE, Institut Agro, Montpellier, France.

Sylvie Vancoppenolle (S)

CIRAD, UMR AGAP, Montpellier, France.
AGAP, Université de Montpellier, Cirad, INRAE, Institut Agro, Montpellier, France.

Claire Billot (C)

CIRAD, UMR AGAP, Montpellier, France.
AGAP, Université de Montpellier, Cirad, INRAE, Institut Agro, Montpellier, France.

Thomas Wicker (T)

Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland.

Yves Vigouroux (Y)

DIADE, Univ Montpellier, IRD, Montpellier, France.

Adeline Barnaud (A)

DIADE, Univ Montpellier, IRD, Montpellier, France. adeline.barnaud@ird.fr.
Laboratoire Mixte International LAPSE, Dakar, Senegal. adeline.barnaud@ird.fr.

Simon G Krattinger (SG)

Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia. simon.krattinger@kaust.edu.sa.

Articles similaires

A scenario for an evolutionary selection of ageing.

Tristan Roget, Claire Macmurray, Pierre Jolivet et al.
1.00
Aging Selection, Genetic Biological Evolution Animals Fertility
Biological Evolution History, 20th Century Selection, Genetic History, 19th Century Biology
Genome Size Genome, Plant Magnoliopsida Evolution, Molecular Arabidopsis
Humans Climate Change Health Personnel Surveys and Questionnaires Medical Oncology

Classifications MeSH