Fonio millet genome unlocks African orphan crop diversity for agriculture in a changing climate.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
08 09 2020
08 09 2020
Historique:
received:
13
04
2020
accepted:
16
08
2020
entrez:
9
9
2020
pubmed:
10
9
2020
medline:
22
9
2020
Statut:
epublish
Résumé
Sustainable food production in the context of climate change necessitates diversification of agriculture and a more efficient utilization of plant genetic resources. Fonio millet (Digitaria exilis) is an orphan African cereal crop with a great potential for dryland agriculture. Here, we establish high-quality genomic resources to facilitate fonio improvement through molecular breeding. These include a chromosome-scale reference assembly and deep re-sequencing of 183 cultivated and wild Digitaria accessions, enabling insights into genetic diversity, population structure, and domestication. Fonio diversity is shaped by climatic, geographic, and ethnolinguistic factors. Two genes associated with seed size and shattering showed signatures of selection. Most known domestication genes from other cereal models however have not experienced strong selection in fonio, providing direct targets to rapidly improve this crop for agriculture in hot and dry environments.
Identifiants
pubmed: 32901040
doi: 10.1038/s41467-020-18329-4
pii: 10.1038/s41467-020-18329-4
pmc: PMC7479619
doi:
Banques de données
Dryad
['10.5061/dryad.2v6wwpzj0']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
4488Références
Hickey, L. T. et al. Breeding crops to feed 10 billion. Nat. Biotechnol. 37, 744–754 (2019).
pubmed: 31209375
Tena, G. Sequencing forgotten crops. Nat. Plants 5, 5 (2019).
pubmed: 30626921
doi: 10.1038/s41477-018-0354-z
National Academies of Sciences Engineering and Medicine. Breakthroughs to Advance Food and Agricultural Research by 2030 (The National Academies Press, Washington, 2019).
FAO. The State of Agricultural Commodity Markets 2018. Agricultural Trade, Climate Change and Food Security (FAO, Rome, 2018).
Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700–704 (2017).
pubmed: 28358074
pmcid: 7427584
doi: 10.1038/nature21403
Fernie, A. R. & Yan, J. De novo domestication: an alternative route toward new crops for the future. Mol. Plant 12, 615–631 (2019).
pubmed: 30999078
doi: 10.1016/j.molp.2019.03.016
Tanksley, S. D. & McCouch, S. R. Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277, 1063–1066 (1997).
pubmed: 9262467
doi: 10.1126/science.277.5329.1063
Gruber, K. Agrobiodiversity: the living library. Nature 544, S8–S10 (2017).
pubmed: 28445449
doi: 10.1038/544S8a
Kistler, L. et al. Multiproxy evidence highlights a complex evolutionary legacy of maize in South America. Science 362, 1309–1313 (2018).
pubmed: 30545889
doi: 10.1126/science.aav0207
Wing, R. A., Purugganan, M. D. & Zhang, Q. F. The rice genome revolution: from an ancient grain to Green Super Rice. Nat. Rev. Genet. 19, 505–517 (2018).
pubmed: 29872215
Eshed, Y. & Lippman, Z. B. Revolutions in agriculture chart a course for targeted breeding of old and new crops. Science 366, eaax0025 (2019).
pubmed: 31488704
doi: 10.1126/science.aax0025
Kantar, M. B. & Runck, B. Take a walk on the wild side. Nat. Clim. Change 9, 731–732 (2019).
doi: 10.1038/s41558-019-0581-y
Dawson, I. K. et al. The role of genetics in mainstreaming the production of new and orphan crops to diversify food systems and support human nutrition. New Phytol. 224, 37–54 (2019).
pubmed: 31063598
doi: 10.1111/nph.15895
Pironon, S. et al. Potential adaptive strategies for 29 sub-Saharan crops under future climate change. Nat. Clim. Change 9, 758–763 (2019).
doi: 10.1038/s41558-019-0585-7
Wallace, J. G., Rodgers-Melnick, E. & Buckler, E. S. On the road to breeding 4.0: unraveling the good, the bad, and the boring of crop quantitative genomics. Annu. Rev. Genet. 52, 421–444 (2018).
pubmed: 30285496
doi: 10.1146/annurev-genet-120116-024846
Chen, K., Wang, Y., Zhang, R., Zhang, H. & Gao, C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 70, 667–697 (2019).
pubmed: 30835493
doi: 10.1146/annurev-arplant-050718-100049
Barnaud, A. et al. High selfing rate inferred for white fonio [Digitaria exilis (Kippist.) Stapf] reproductive system opens up opportunities for breeding programs. Genet. Resour. Crop Evol. 64, 1485–1490 (2017).
doi: 10.1007/s10722-017-0515-3
Ayenan, M. A. T., Sodedji, K. A. F., Nwankwo, C. I., Olodo, K. F. & Alladassi, M. E. B. Harnessing genetic resources and progress in plant genomics for fonio (Digitaria spp.) improvement. Genet. Resour. Crop Evol. 65, 373–386 (2018).
doi: 10.1007/s10722-017-0565-6
Cruz, J. F. & Beavogui, F. Fonio, an African Cereal (CIRAD, France, 2016).
Adoukonou-Sagbadja, H., Wagner, C., Ordon, F. & Friedt, W. Reproductive system and molecular phylogenetic relationships of fonio millets (Digitaria spp., Poaceae) with some polyploid wild relatives. Trop. Plant Biol. 3, 240–251 (2010).
doi: 10.1007/s12042-010-9063-0
Abdul, S. D. & Jideani, A. I. O. Fonio (Digitaria spp.) breeding. In Advances in Plant Breeding Strategies: Cereals (eds Al-Khayri, J. M., Jain, S. M. & Johnson, D. V.) 47–81 (Springer, 2019).
Adoukonou-Sagbadja, H. et al. Flow cytometric analysis reveals different nuclear DNA contents in cultivated Fonio (Digitaria spp.) and some wild relatives from West-Africa. Plant Syst. Evol. 267, 163–176 (2007).
doi: 10.1007/s00606-007-0552-z
Avni, R. et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357, 93–97 (2017).
pubmed: 28684525
doi: 10.1126/science.aan0032
Edger, P. P. et al. Origin and evolution of the octoploid strawberry genome. Nat. Genet. 51, 541–547 (2019).
pubmed: 30804557
pmcid: 6882729
doi: 10.1038/s41588-019-0356-4
Springer, N. M. et al. The maize W22 genome provides a foundation for functional genomics and transposon biology. Nat. Genet. 50, 1282–1288 (2018).
pubmed: 30061736
doi: 10.1038/s41588-018-0158-0
Han, Y. H., Zhang, T., Thammapichai, P., Weng, Y. Q. & Jiang, J. M. Chromosome-specific painting in Cucumis species using bulked oligonucleotides. Genetics 200, 771–779 (2015).
pubmed: 25971668
pmcid: 4512542
doi: 10.1534/genetics.115.177642
Monat, C. et al. TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools. Genome Biol. 20, 284 (2019).
pubmed: 31849336
pmcid: 6918601
doi: 10.1186/s13059-019-1899-5
Bennetzen, J. L. et al. Reference genome sequence of the model plant Setaria. Nat. Biotechnol. 30, 555–561 (2012).
pubmed: 22580951
doi: 10.1038/nbt.2196
Tang, H. Disentangling a polyploid genome. Nat. Plants 3, 688–689 (2017).
pubmed: 28827641
doi: 10.1038/s41477-017-0001-0
Suguiyama, V. F., Vasconcelos, L. A. B., Rossi, M. M., Biondo, C. & de Setta, N. The population genetic structure approach adds new insights into the evolution of plant LTR retrotransposon lineages. PLoS ONE 14, e0214542 (2019).
pubmed: 31107873
pmcid: 6527191
doi: 10.1371/journal.pone.0214542
International Wheat Genome Sequencing Consortium. Shifting the limits in wheat research and breeding through a fully annotated and anchored reference genome sequence. Science 361, eaar7191 (2018).
doi: 10.1126/science.aar7191
Ramirez-Gonzalez, R. H. et al. The transcriptional landscape of polyploid wheat. Science 361, eaar6089 (2018).
pubmed: 30115782
doi: 10.1126/science.aar6089
Bird, K. A., VanBuren, R., Puzey, J. R. & Edger, P. P. The causes and consequences of subgenome dominance in hybrids and recent polyploids. New Phytol. 220, 87–93 (2018).
pubmed: 29882360
doi: 10.1111/nph.15256
Schnable, J. C., Springer, N. M. & Freeling, M. Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc. Natl Acad. Sci. USA 108, 4069–4074 (2011).
pubmed: 21368132
doi: 10.1073/pnas.1101368108
pmcid: 3053962
Shi, J. P. et al. Chromosome conformation capture resolved near complete genome assembly of broomcorn millet. Nat. Commun. 10, 464 (2019).
pubmed: 30683940
pmcid: 6347627
doi: 10.1038/s41467-018-07876-6
Clément, J. & Leblanc, J. M. Collecte IBPGR-ORSTOM de 1977 au Togo (Catalogue ORSTOM, 1984).
Ramu, P. et al. Cassava haplotype map highlights fixation of deleterious mutations during clonal propagation. Nat. Genet. 49, 959–963 (2017).
pubmed: 28416819
doi: 10.1038/ng.3845
Patwari, P. et al. Surface wax esters contribute to drought tolerance in Arabidopsis. Plant J. 98, 727–744 (2019).
pubmed: 30729606
doi: 10.1111/tpj.14269
Pavlidis, P., Zivkovic, D., Stamatakis, A. & Alachiotis, N. SweeD: Likelihood-based detection of selective sweeps in thousands of genomes. Mol. Biol. Evol. 30, 2224–2234 (2013).
pubmed: 23777627
pmcid: 3748355
doi: 10.1093/molbev/mst112
Li, Y. et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat. Genet. 43, 1266–1269 (2011).
pubmed: 22019783
doi: 10.1038/ng.977
Lin, Z. W. et al. Parallel domestication of the Shattering1 genes in cereals. Nat. Genet. 44, 720–724 (2012).
pubmed: 22581231
pmcid: 3532051
doi: 10.1038/ng.2281
Wang, M. H. et al. The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication. Nat. Genet. 46, 982–988 (2014).
pubmed: 25064006
pmcid: 7036042
doi: 10.1038/ng.3044
VanBuren, R. et al. Exceptional subgenome stability and functional divergence in the allotetraploid Ethiopian cereal teff. Nat. Commun. 11, 884 (2020).
pubmed: 32060277
pmcid: 7021729
doi: 10.1038/s41467-020-14724-z
Cubry, P. et al. The rise and fall of African rice cultivation revealed by analysis of 246 new genomes. Curr. Biol. 28, 2274–2282 (2018).
pubmed: 29983312
doi: 10.1016/j.cub.2018.05.066
Liang, Z. et al. Whole-genome resequencing of 472 Vitis accessions for grapevine diversity and demographic history analyses. Nat. Commun. 10, 1190 (2019).
pubmed: 30867414
pmcid: 6416300
doi: 10.1038/s41467-019-09135-8
Blench, R. M. Vernacular names for African millets and other minor cereals and their significance for agricultural history. Archaeol. Anthropol. Sci. 8, 1–8 (2016).
doi: 10.1007/s12520-012-0104-5
Adoukonou-Sagbadja, H., Dansi, A., Vodouhe, R. & Akpagana, K. Collecting fonio (Digitaria exilis Kipp. Stapf, D. iburua Stapf) landraces in Togo. Plant Genet. Resour. Newsl. 139, 63–67 (2004).
Meyer, R. S. & Purugganan, M. D. Evolution of crop species: genetics of domestication and diversification. Nat. Rev. Genet. 14, 840–852 (2013).
pubmed: 24240513
doi: 10.1038/nrg3605
Barnaud, A. et al. Development of nuclear microsatellite markers for the fonio, Digitaria exilis (Poaceae), an understudied West African cereal. Am. J. Bot. 99, E105–E107 (2012).
pubmed: 22358046
doi: 10.3732/ajb.1100423
Doležel, J., Greilhuber, J. & Suda, J. Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2, 2233–2244 (2007).
pubmed: 17853881
doi: 10.1038/nprot.2007.310
Doležel, J., Bartoš, J., Voglmayr, H. & Greilhuber, J. Nuclear DNA content and genome size of trout and human. Cytometry 51A, 127–128 (2003).
doi: 10.1002/cyto.a.10013
Jackman, S. D. et al. Tigmint: correcting assembly errors using linked reads from large molecules. BMC Bioinforma. 19, 393 (2018).
doi: 10.1186/s12859-018-2425-6
Coombe, L. et al. ARKS: chromosome-scale scaffolding of human genome drafts with linked read kmers. BMC Bioinforma. 19, 234 (2018).
doi: 10.1186/s12859-018-2243-x
Warren, R. L. et al. LINKS: scalable, alignment-free scaffolding of draft genomes with long reads. GigaScience 4, 35 (2015).
pubmed: 26244089
pmcid: 4524009
doi: 10.1186/s13742-015-0076-3
Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).
pubmed: 20080505
pmcid: 2828108
doi: 10.1093/bioinformatics/btp698
Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).
pubmed: 28336562
pmcid: 5635820
doi: 10.1126/science.aal3327
Novak, P., Neumann, P., Pech, J., Steinhaisl, J. & Macas, J. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29, 792–793 (2013).
pubmed: 23376349
doi: 10.1093/bioinformatics/btt054
Untergasser, A. et al. Primer3–new capabilities and interfaces. Nucleic Acids Res. 40, e115 (2012).
pubmed: 22730293
pmcid: 3424584
doi: 10.1093/nar/gks596
Šimoníková, D. et al. Chromosome painting facilitates anchoring reference genome sequence to chromosomes in situ and integrated karyotyping in banana (Musa Spp.). Front. Plant Sci. 10, 1503 (2019).
pubmed: 31824534
pmcid: 6879668
doi: 10.3389/fpls.2019.01503
Ellinghaus, D., Kurtz, S. & Willhoeft, U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinforma. 9, 18 (2008).
doi: 10.1186/1471-2105-9-18
Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, W265–W268 (2007).
pubmed: 17485477
pmcid: 1933203
doi: 10.1093/nar/gkm286
Ou, S. J. & Jiang, N. LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol. 176, 1410–1422 (2018).
pubmed: 29233850
doi: 10.1104/pp.17.01310
James, B. T., Luczak, B. B. & Girgis, H. Z. MeShClust: an intelligent tool for clustering DNA sequences. Nucleic Acids Res. 46, e83 (2018).
pubmed: 29718317
pmcid: 6101578
doi: 10.1093/nar/gky315
Sonnhammer, E. L. & Durbin, R. A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 167, GC1–GC10 (1995).
pubmed: 8566757
doi: 10.1016/0378-1119(95)00714-8
Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).
pubmed: 21988835
pmcid: 3261699
doi: 10.1038/msb.2011.75
Knaus, B. J. & Grunwald, N. J. VCFR: a package to manipulate and visualize variant call format data in R. Mol. Ecol. Resour. 17, 44–53 (2017).
pubmed: 27401132
doi: 10.1111/1755-0998.12549
Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).
pubmed: 18397895
doi: 10.1093/bioinformatics/btn129
Wickham, H. ggplot2 - Elegant Graphics for Data Analysis (Springer International Publishing, 2016).
Ma, J. X. & Bennetzen, J. L. Rapid recent growth and divergence of rice nuclear genomes. Proc. Natl Acad. Sci. USA 101, 12404–12410 (2004).
pubmed: 15240870
doi: 10.1073/pnas.0403715101
pmcid: 515075
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
pubmed: 20709691
Cantarel, B. L. et al. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 18, 188–196 (2008).
pubmed: 18025269
pmcid: 2134774
doi: 10.1101/gr.6743907
Kopylova, E., Noe, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).
pubmed: 23071270
doi: 10.1093/bioinformatics/bts611
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404
pmcid: 4103590
doi: 10.1093/bioinformatics/btu170
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
doi: 10.1093/bioinformatics/bts635
pubmed: 23104886
Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).
pubmed: 25690850
pmcid: 4643835
doi: 10.1038/nbt.3122
The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).
doi: 10.1038/35048692
Paterson, A. H. et al. The Sorghum bicolor genome and the diversification of grasses. Nature 457, 551–556 (2009).
pubmed: 19189423
doi: 10.1038/nature07723
Schnable, P. S. et al. The B73 maize genome: complexity, diversity, and dynamics. Science 326, 1112–1115 (2009).
pubmed: 19965430
doi: 10.1126/science.1178534
International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature 436, 793–800 (2005).
doi: 10.1038/nature03895
Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).
pubmed: 9254694
pmcid: 146917
doi: 10.1093/nar/25.17.3389
Slater, G. S. & Birney, E. Automated generation of heuristics for biological sequence comparison. BMC Bioinforma. 6, 31 (2005).
doi: 10.1186/1471-2105-6-31
Borodovsky, M. & Lomsadze, A. Eukaryotic gene prediction using GeneMark.hmm-E and GeneMark-ES. Curr. Protoc. Bioinforma. 35, 4.6.1–4.6.10 (2011).
doi: 10.1002/0471250953.bi0406s35
Korf, I. Gene finding in novel genomes. BMC Bioinforma. 5, 59 (2004).
doi: 10.1186/1471-2105-5-59
Stanke, M. & Waack, S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19, ii215–ii225 (2003).
pubmed: 14534192
doi: 10.1093/bioinformatics/btg1080
Lovell, J. T. et al. The genomic landscape of molecular responses to natural drought stress in Panicum hallii. Nat. Commun. 9, 5213 (2018).
pubmed: 30523281
pmcid: 6283873
doi: 10.1038/s41467-018-07669-x
The International Brachypodium Initiative. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463, 763–768 (2010).
doi: 10.1038/nature08747
Mascher, M. et al. A chromosome conformation capture ordered sequence of the barley genome. Nature 544, 427–433 (2017).
pubmed: 28447635
doi: 10.1038/nature22043
Luo, M. C. et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551, 498–502 (2017).
pubmed: 29143815
pmcid: 7416625
doi: 10.1038/nature24486
Wang, Y. P. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49 (2012).
pubmed: 22217600
pmcid: 3326336
doi: 10.1093/nar/gkr1293
Thompson, J. D., Higgins, D. G. & Gibson, T. J. Clustal-W - Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).
pubmed: 7984417
pmcid: 308517
doi: 10.1093/nar/22.22.4673
Yang, Z. H. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).
pubmed: 17483113
doi: 10.1093/molbev/msm088
Gaut, B. S., Morton, B. R., McCaig, B. C. & Clegg, M. T. Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc. Natl Acad. Sci. USA 93, 10274–10279 (1996).
doi: 10.1073/pnas.93.19.10274
pubmed: 8816790
pmcid: 38374
Hu, F., Lin, Y. & Tang, J. MLGO: phylogeny reconstruction and ancestral inference from gene-order data. BMC Bioinforma. 15, 354 (2014).
doi: 10.1186/s12859-014-0354-6
Ren, L., Huang, W. & Cannon, S. B. Reconstruction of ancestral genome reveals chromosome evolution history for selected legume species. New Phytol. 223, 2090–2103 (2019).
pubmed: 30834536
doi: 10.1111/nph.15770
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma. 12, 323 (2011).
doi: 10.1186/1471-2105-12-323
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943
pmcid: 2723002
doi: 10.1093/bioinformatics/btp352
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
pubmed: 20644199
pmcid: 2928508
doi: 10.1101/gr.107524.110
Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinforma. 43, 11 10 1-11 10 33 (2013).
doi: 10.1002/0471250953.bi1110s43
Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).
pubmed: 21653522
pmcid: 3137218
doi: 10.1093/bioinformatics/btr330
Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w(1118); iso-2; iso-3. Fly 6, 80–92 (2012).
pubmed: 22728672
pmcid: 3679285
doi: 10.4161/fly.19695
Frichot, E. & Francois, O. LEA: an R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929 (2015).
doi: 10.1111/2041-210X.12382
Nychka, D., Furrer, R., Paige, J. & Sain, S. fields: Tools for Spatial Data. Retrieved from https://cran.r-project.org/package=fields (2017).
Cubry, P., Vigouroux, Y. & Francois, O. The empirical distribution of singletons for geographic samples of DNA sequences. Front. Genet. 8, 139 (2017).
pubmed: 29033977
pmcid: 5627571
doi: 10.3389/fgene.2017.00139
Zhang, C., Dong, S. S., Xu, J. Y., He, W. M. & Yang, T. L. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 35, 1786–1788 (2019).
pubmed: 30321304
doi: 10.1093/bioinformatics/bty875
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
doi: 10.1002/joc.1276
Cubry, P. et al. Genome wide association study pinpoints key agronomic QTLs in African rice Oryza glaberrima. Preprint at https://doi.org/10.1101/2020.01.07.897298 (2020).
Kang, H. M. et al. Efficient control of population structure in model organism association mapping. Genetics 178, 1709–1723 (2008).
pubmed: 18385116
pmcid: 2278096
doi: 10.1534/genetics.107.080101
Lipka, A. E. et al. GAPIT: genome association and prediction integrated tool. Bioinformatics 28, 2397–2399 (2012).
doi: 10.1093/bioinformatics/bts444
pubmed: 22796960
Caye, K., Jumentier, B., Lepeule, J. & Francois, O. LFMM 2: fast and accurate inference of gene-environment associations in genome-wide studies. Mol. Biol. Evol. 36, 852–860 (2019).
pubmed: 30657943
pmcid: 6659841
doi: 10.1093/molbev/msz008
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. (Methdol.) 57, 289–300 (1995).
Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
pubmed: 17701901
pmcid: 1950838
doi: 10.1086/519795
Turner, S. D. qqman: an R package for visualizing GWAS results usingQ-Q and Manhattan plots. J. Open Source Softw. 3, 731 (2018).
doi: 10.21105/joss.00731
Kulmanov, M. & Hoehndorf, R. DeepGOPlus: improved protein function prediction from sequence. Bioinformatics 36, 422–429 (2020).
pubmed: 31350877
Alexa, A., Rahnenfuhrer, J. & Lengauer, T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22, 1600–1607 (2006).
pubmed: 16606683
doi: 10.1093/bioinformatics/btl140
Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).
pubmed: 21753753
pmcid: 3154645
doi: 10.1038/nature10231
Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 46, 919–925 (2014).
pubmed: 24952747
pmcid: 4116295
doi: 10.1038/ng.3015
Terhorst, J., Kamm, J. A. & Song, Y. S. Robust and scalable inference of population history froth hundreds of unphased whole genomes. Nat. Genet. 49, 303–309 (2017).
pubmed: 28024154
doi: 10.1038/ng.3748
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278
pmcid: 2832824
doi: 10.1093/bioinformatics/btq033
Julkowska, M. M. et al. MVApp-Multivariate analysis application for streamlined data analysis and curation. Plant Physiol. 180, 1261–1276 (2019).
pubmed: 31061104
pmcid: 6752927
doi: 10.1104/pp.19.00235