Sympathetic nerves control bacterial clearance.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
14 09 2020
14 09 2020
Historique:
received:
29
05
2020
accepted:
18
08
2020
entrez:
15
9
2020
pubmed:
16
9
2020
medline:
13
2
2021
Statut:
epublish
Résumé
A neural reflex mediated by the splanchnic sympathetic nerves regulates systemic inflammation in negative feedback fashion, but its consequences for host responses to live infection are unknown. To test this, conscious instrumented sheep were infected intravenously with live E. coli bacteria and followed for 48 h. A month previously, animals had undergone either bilateral splanchnic nerve section or a sham operation. As established for rodents, sheep with cut splanchnic nerves mounted a stronger systemic inflammatory response: higher blood levels of tumor necrosis factor alpha and interleukin-6 but lower levels of the anti-inflammatory cytokine interleukin-10, compared with sham-operated animals. Sequential blood cultures revealed that most sham-operated sheep maintained high circulating levels of live E. coli throughout the 48-h study period, while all sheep without splanchnic nerves rapidly cleared their bacteraemia and recovered clinically. The sympathetic inflammatory reflex evidently has a profound influence on the clearance of systemic bacterial infection.
Identifiants
pubmed: 32929135
doi: 10.1038/s41598-020-72008-4
pii: 10.1038/s41598-020-72008-4
pmc: PMC7490383
doi:
Substances chimiques
Catecholamines
0
Cytokines
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
15009Références
Medzhitov, R. Recognition of microorganisms and activation of the immune response. Nature 449, 819–826 (2007).
doi: 10.1038/nature06246
Mogensen, T. H. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev. 22, 240–273 (2009).
doi: 10.1128/CMR.00046-08
Sternberg, E. M. Neural-immune interactions in health and disease. J. Clin. Invest. 100, 2641–2647 (1997).
doi: 10.1172/JCI119807
Martelli, D., Yao, S. T., Mancera, J., McKinley, M. J. & McAllen, R. M. Reflex control of inflammation by the splanchnic anti-inflammatory pathway is sustained and independent of anesthesia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R1085-1091 (2014).
doi: 10.1152/ajpregu.00259.2014
Martelli, D., Yao, S. T., McKinley, M. J. & McAllen, R. M. Reflex control of inflammation by sympathetic nerves, not the vagus. J. Physiol. 592, 1677–1686 (2014).
doi: 10.1113/jphysiol.2013.268573
Martelli, D., McKinley, M. J. & McAllen, R. M. The cholinergic anti-inflammatory pathway: a critical review. Autonom. Neurosci. Basic Clin. 182, 65–69 (2014).
doi: 10.1016/j.autneu.2013.12.007
Martelli, D., Yao, S. T., McKinley, M. J. & McAllen, R. M. Neural control of inflammation by the greater splanchnic nerves. Temperature 1, 14–15 (2014).
doi: 10.4161/temp.29135
Ramchandra, R. et al. Septic shock induces distinct changes in sympathetic nerve activity to the heart and kidney in conscious sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R1247–R1253 (2009).
doi: 10.1152/ajpregu.00437.2009
Komegae, E. N. et al. Vagal afferent activation suppresses systemic inflammation via the splanchnic anti-inflammatory pathway. Brain Behav. Immun. 73, 441–449 (2018).
doi: 10.1016/j.bbi.2018.06.005
Patel, A. A. et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J. Exp. Med. 214, 1913–1923 (2017).
doi: 10.1084/jem.20170355
Dinarello, C. A., Gatti, S. & Bartfai, T. Fever: links with an ancient receptor. Curr. Biol. 9, R143–R146 (1999).
doi: 10.1016/S0960-9822(02)00013-1
Wright, H. L., Moots, R. J., Bucknall, R. C. & Edwards, S. W. Neutrophil function in inflammation and inflammatory diseases. Rheumatology 49, 1618–1631 (2010).
doi: 10.1093/rheumatology/keq045
Elenkov, I. J., Wilder, R. L., Chrousos, G. P. & Vizi, E. S. The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system. Pharmacol. Rev. 52, 595–638 (2000).
pubmed: 11121511
Sayk, F. et al. Endotoxemia causes central downregulation of sympathetic vasomotor tone in healthy humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R891-898 (2008).
doi: 10.1152/ajpregu.90444.2008
Rogausch, H., Vo, N. T., Del Rey, A. & Besedovsky, H. O. Increased sensitivity of the baroreceptor reflex after bacterial endotoxin. Ann. N. Y. Acad. Sci. 917, 165–168 (2000).
doi: 10.1111/j.1749-6632.2000.tb05380.x
Martelli, D., Farmer, D. G. S., McKinley, M. J., Yao, S. T. & McAllen, R. M. Anti-inflammatory reflex action of splanchnic sympathetic nerves is distributed across abdominal organs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 316, R235–R242 (2019).
doi: 10.1152/ajpregu.00298.2018
Bornstein, S., Ehrhart-Bornstein, M., Scherbaum, W., Pfeiffer, E. & Holst, J. Effects of splanchnic nerve stimulation on the adrenal cortex may be mediated by chromaffin cells in a paracrine manner. Endocrinology 127, 900–906 (1990).
doi: 10.1210/endo-127-2-900
Di Giantomasso, D., May, C. N. & Bellomo, R. Norepinephrine and vital organ blood flow during experimental hyperdynamic sepsis. Intens. Care Med. 29, 1774–1781 (2003).
doi: 10.1007/s00134-003-1736-9
Lankadeva, Y. R., Kosaka, J., Evans, R. G., Bellomo, R. & May, C. N. Urinary oxygenation as a surrogate marker of medullary oxygenation during angiotensin II therapy in septic acute kidney injury. Crit. Care. Med. 46, e41-48 (2018).
doi: 10.1097/CCM.0000000000002797
Lankadeva, Y. R. et al. Intra-renal and urinary oxygenation during norepinephrine resuscitation in ovine septic acute kidney injury. Kidney Int. 90, 100–108 (2016).
doi: 10.1016/j.kint.2016.02.017
Worlicek, M. et al. Splanchnic sympathectomy prevents translocation and spreading of E. col but not S. aureus in liver cirrhosis. Gut 59, 1127–1134 (2010).
doi: 10.1136/gut.2009.185413
Seeley, E. J., Matthay, M. A. & Wolters, P. J. Inflection points in sepsis biology: from local defense to systemic organ injury. Am. J. Physiol. Lung. Cell. Mol. Physiol. 303, L355-363 (2012).
doi: 10.1152/ajplung.00069.2012
Hotchkiss, R. S., Monneret, G. & Payen, D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat. Rev. Immunol. 13, 862–874 (2013).
doi: 10.1038/nri3552
Venet, F. & Monneret, G. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nat. Rev. Nephrol. 14, 121–137 (2018).
doi: 10.1038/nrneph.2017.165
Lankadeva, Y. R., Kosaka, J., Evans, R. G. & May, C. N. An ovine model for studying the pathophysiology of septic acute kidney injury. Methods Mol. Biol. 1717, 207–218 (2018).
doi: 10.1007/978-1-4939-7526-6_16
Lankadeva, Y. R. et al. Dexmedetomidine reduces norepinephrine requirements and preserves renal oxygenation and function in ovine septic acute kidney injury. Kidney Int. 96, 1150–1161 (2019).
doi: 10.1016/j.kint.2019.06.013
Neeland, M. R., Elhay, M. J., Nathanielsz, J., Meeusen, E. N. T. & de Veer, M. J. Incorporation of CpG into a liposomal vaccine formulation increases the maturation of antigen-loaded dendritic cells and monocytes to improve local and systemic immunity. J. Immunol. 192, 3666–3675 (2014).
doi: 10.4049/jimmunol.1303014
Neeland, M. R. et al. The lymphatic immune response induced by the adjuvant AS01: a comparison of intramuscular and subcutaneous immunization routes. J. Immunol. 197, 2704–2714 (2016).
doi: 10.4049/jimmunol.1600817
Miles, A. A., Misra, S. S. & Irwin, J. O. The estimation of the bactericidal power of the blood. J. Hyg. 38, 732–749 (1938).
pubmed: 20475467