Use of Physiologically Based Pharmacokinetic (PBPK) Modeling for Predicting Drug-Food Interactions: an Industry Perspective.
Administration, Oral
Animals
Chemistry, Pharmaceutical
Computer Simulation
Dogs
Drug Liberation
/ physiology
Food-Drug Interactions
Humans
Hydrogen-Ion Concentration
Intestinal Absorption
/ physiology
Intestinal Mucosa
/ metabolism
Madin Darby Canine Kidney Cells
Models, Biological
Permeability
Solubility
PBBM
PBPK
drug-food interaction
food effect
modeling and simulation
Journal
The AAPS journal
ISSN: 1550-7416
Titre abrégé: AAPS J
Pays: United States
ID NLM: 101223209
Informations de publication
Date de publication:
27 09 2020
27 09 2020
Historique:
received:
29
06
2020
accepted:
01
09
2020
entrez:
27
9
2020
pubmed:
28
9
2020
medline:
9
9
2021
Statut:
epublish
Résumé
The effect of food on pharmacokinetic properties of drugs is a commonly observed occurrence affecting about 40% of orally administered drugs. Within the pharmaceutical industry, significant resources are invested to predict and characterize a clinically relevant food effect. Here, the predictive performance of physiologically based pharmacokinetic (PBPK) food effect models was assessed via de novo mechanistic absorption models for 30 compounds using controlled, pre-defined in vitro, and modeling methodology. Compounds for which absorption was known to be limited by intestinal transporters were excluded in this analysis. A decision tree for model verification and optimization was followed, leading to high, moderate, or low food effect prediction confidence. High (within 0.8- to 1.25-fold) to moderate confidence (within 0.5- to 2-fold) was achieved for most of the compounds (15 and 8, respectively). While for 7 compounds, prediction confidence was found to be low (> 2-fold). There was no clear difference in prediction success for positive or negative food effects and no clear relationship to the BCS category of tested drug molecules. However, an association could be demonstrated when the food effect was mainly related to changes in the gastrointestinal luminal fluids or physiology, including fluid volume, motility, pH, micellar entrapment, and bile salts. Considering these findings, it is recommended that appropriately verified mechanistic PBPK modeling can be leveraged with high to moderate confidence as a key approach to predicting potential food effect, especially related to mechanisms highlighted here.
Identifiants
pubmed: 32981010
doi: 10.1208/s12248-020-00508-2
pii: 10.1208/s12248-020-00508-2
pmc: PMC7520419
doi:
Types de publication
Evaluation Study
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
123Commentaires et corrections
Type : ErratumIn
Références
AAPS J. 2017 Jul;19(4):1084-1090
pubmed: 28321831
Hypertension. 1983 Jul-Aug;5(4 Pt 2):II18-24
pubmed: 6862586
Eur J Pharm Biopharm. 2005 Aug;60(3):413-7
pubmed: 15893920
AAPS J. 2009 Jun;11(2):323-34
pubmed: 19430911
J Pharm Sci. 2015 Jan;104(1):135-43
pubmed: 25417837
Biopharm Drug Dispos. 2003 Jan;24(1):45-51
pubmed: 12516078
J Pharm Sci. 1995 Sep;84(9):1090-3
pubmed: 8537887
Int J Pharm. 2004 Nov 5;285(1-2):135-46
pubmed: 15488686
AAPS J. 2014 Sep;16(5):1077-84
pubmed: 24970349
J Pharm Sci. 2013 Sep;102(9):3205-19
pubmed: 23696038
Clin Pharmacokinet. 2011 Sep;50(9):613-23
pubmed: 21827216
Mol Pharm. 2019 Sep 3;16(9):3938-3947
pubmed: 31335153
Eur J Clin Pharmacol. 1996;50(3):195-201
pubmed: 8737759
Pharm Res. 1997 Jun;14(6):763-6
pubmed: 9210194
Eur J Pharm Biopharm. 2010 Sep;76(1):95-104
pubmed: 20576487
J Pharm Pharmacol. 2019 Apr;71(4):510-535
pubmed: 29956330
Eur J Pharm Sci. 2005 Mar;24(4):305-13
pubmed: 15734297
CPT Pharmacometrics Syst Pharmacol. 2017 Nov;6(11):747-755
pubmed: 28748626
J Pharm Sci. 1998 Dec;87(12):1604-7
pubmed: 10189274
Pharm Res. 2007 Jun;24(6):1118-30
pubmed: 17385020
Drug Metab Dispos. 2010 Jul;38(7):1147-58
pubmed: 20368326
Clin Pharmacol Ther. 1987 Jul;42(1):72-5
pubmed: 3595068
Int J Pharm. 2016 Dec 30;515(1-2):367-373
pubmed: 27765726
CPT Pharmacometrics Syst Pharmacol. 2018 Feb;7(2):82-89
pubmed: 29168611
Am J Cardiol. 2001 Feb 15;87(4):432-5
pubmed: 11179527
AAPS PharmSciTech. 2015 Feb;16(1):76-84
pubmed: 25182387
Mol Pharm. 2018 Oct 1;15(10):4470-4480
pubmed: 30111113
Clin Pharmacokinet. 1999 Mar;36(3):233-54
pubmed: 10223170
AAPS J. 2015 Jul;17(4):988-98
pubmed: 25933598
Mol Pharm. 2017 Dec 4;14(12):4305-4320
pubmed: 28771009
Clin Pharmacokinet. 2017 Sep;56(9):987-997
pubmed: 28185218
J Pharm Sci. 2008 Apr;97(4):1427-42
pubmed: 17724660
J Pharm Sci. 2018 Jan;107(1):495-502
pubmed: 28993217
Mol Pharm. 2013 Aug 5;10(8):3112-27
pubmed: 23822591
Eur J Pharm Biopharm. 2011 Oct;79(2):349-56
pubmed: 21527341
Eur J Pharm Sci. 2019 Jun 15;134:31-59
pubmed: 30974173
Mol Pharm. 2017 Dec 4;14(12):4181-4191
pubmed: 28366005
Pharm Res. 2008 Jul;25(7):1663-76
pubmed: 18404251
Eur J Pharm Sci. 2017 May 1;102:284-298
pubmed: 28286289
CPT Pharmacometrics Syst Pharmacol. 2015 Apr;4(4):226-30
pubmed: 26225246
J Pharm Sci. 2002 Apr;91(4):1169-77
pubmed: 11948555
Eur J Pharm Sci. 2010 May 12;40(2):118-24
pubmed: 20307655
Eur J Pharm Sci. 2014 Jun 16;57:333-41
pubmed: 23988845
J Clin Pharmacol. 2006 Mar;46(3):291-300
pubmed: 16490805
AAPS J. 2016 Nov;18(6):1464-1474
pubmed: 27450228
AAPS J. 2016 Jul;18(4):933-47
pubmed: 27060007
J Pharm Pharmacol. 2019 Apr;71(4):557-580
pubmed: 30203429
J Pharm Biomed Anal. 2013 Sep;83:279-85
pubmed: 23770783
Biopharm Drug Dispos. 2012 Oct;33(7):403-16
pubmed: 22782559
Mol Pharm. 2010 Oct 4;7(5):1498-507
pubmed: 20698569
Am J Med. 1987 Dec 21;83(6B):10-4
pubmed: 3503594
J Pharm Sci. 2019 Jan;108(1):592-602
pubmed: 29906472