Escherichia coli is engineered to grow on CO


Journal

Nature microbiology
ISSN: 2058-5276
Titre abrégé: Nat Microbiol
Pays: England
ID NLM: 101674869

Informations de publication

Date de publication:
12 2020
Historique:
received: 07 05 2020
accepted: 02 09 2020
pubmed: 30 9 2020
medline: 27 2 2021
entrez: 29 9 2020
Statut: ppublish

Résumé

We engineered Escherichia coli to grow on CO

Identifiants

pubmed: 32989263
doi: 10.1038/s41564-020-00793-9
pii: 10.1038/s41564-020-00793-9
doi:

Substances chimiques

Escherichia coli Proteins 0
Formates 0
formic acid 0YIW783RG1
Carbon Dioxide 142M471B3J
Oxidoreductases EC 1.-
ubiquinol oxidase EC 1.10.99.-
Formate Dehydrogenases EC 1.17.1.9

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1459-1463

Références

Kumar, A. et al. Enhanced CO
doi: 10.1016/j.tibtech.2010.04.004
Singh, A. K., Kishore, G. M. & Pakrasi, H. B. Emerging platforms for co-utilization of one-carbon substrates by photosynthetic organisms. Curr. Opin. Biotechnol. 53, 201–208 (2018).
doi: 10.1016/j.copbio.2018.02.002
Tashiro, Y., Hirano, S., Matson, M. M., Atsumi, S. & Kondo, A. Electrical-biological hybrid system for CO
doi: 10.1016/j.ymben.2018.03.015
Yishai, O., Bouzon, M., Döring, V. & Bar-Even, A. In vivo assimilation of one-carbon via a synthetic reductive glycine pathway in Escherichia coli. ACS Synth. Biol. 7, 2023–2028 (2018).
doi: 10.1021/acssynbio.8b00131
Döring, V., Darii, E., Yishai, O., Bar-Even, A. & Bouzon, M. Implementation of a reductive route of one-carbon assimilation in Escherichia coli through directed evolution. ACS Synth. Biol. 7, 2029–2036 (2018).
doi: 10.1021/acssynbio.8b00167
Innocent, B. et al. Electro-reduction of carbon dioxide to formate on lead electrode in aqueous medium. J. Appl. Electrochem. 39, 227 (2009).
doi: 10.1007/s10800-008-9658-4
Agarwal, A. S., Zhai, Y., Hill, D. & Sridhar, N. The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility. ChemSusChem 4, 1301–1310 (2011).
doi: 10.1002/cssc.201100220
Boddien, A. et al. CO
doi: 10.1002/anie.201101995
Bang, J. & Lee, S. Y. Assimilation of formic acid and CO
doi: 10.1073/pnas.1810386115
Gleizer, S. et al. Conversion of Escherichia coli to generate all biomass carbon from CO
doi: 10.1016/j.cell.2019.11.009
Kim, S. et al. Growth of E. coli on formate and methanol via the reductive glycine pathway. Nat. Chem. Biol. 16, 538–545 (2020).
doi: 10.1038/s41589-020-0473-5
Jeong, K. J. & Lee, S. Y. Enhanced production of recombinant proteins in Escherichia coli by filamentation suppression. Appl. Environ. Microbiol. 69, 1295–1298 (2003).
doi: 10.1128/AEM.69.2.1295-1298.2003
Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).
doi: 10.1038/nmeth.1318
Song, C. W. & Lee, S. Y. Rapid one-step inactivation of single or multiple genes in Escherichia coli. Biotechnol. J. 8, 776–784 (2013).
doi: 10.1002/biot.201300153

Auteurs

Junho Bang (J)

Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, Republic of Korea.

Chang Hun Hwang (CH)

Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, Republic of Korea.

Jung Ho Ahn (JH)

Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, Republic of Korea.

Jong An Lee (JA)

Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, Republic of Korea.

Sang Yup Lee (SY)

Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea. leesy@kaist.ac.kr.
Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, Republic of Korea. leesy@kaist.ac.kr.
BioInformatics Research Center and BioProcess Engineering Research Center KAIST, Daejeon, Republic of Korea. leesy@kaist.ac.kr.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Female Biofilms Animals Lactobacillus Mice
Saccharomyces cerevisiae Aldehydes Biotransformation Flavoring Agents Lipoxygenase

Classifications MeSH