Mechanism and evolution of the Zn-fingernail required for interaction of VARP with VPS29.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
06 10 2020
Historique:
received: 28 01 2020
accepted: 08 09 2020
entrez: 7 10 2020
pubmed: 8 10 2020
medline: 30 10 2020
Statut: epublish

Résumé

VARP and TBC1D5 are accessory/regulatory proteins of retromer-mediated retrograde trafficking from endosomes. Using an NMR/X-ray approach, we determined the structure of the complex between retromer subunit VPS29 and a 12 residue, four-cysteine/Zn

Identifiants

pubmed: 33024112
doi: 10.1038/s41467-020-18773-2
pii: 10.1038/s41467-020-18773-2
pmc: PMC7539009
doi:

Substances chimiques

ANKRD27 protein, human 0
GTPase-Activating Proteins 0
Guanine Nucleotide Exchange Factors 0
Multiprotein Complexes 0
TBC1D5 protein, human 0
VPS29 protein, human 0
Vesicular Transport Proteins 0
Zinc J41CSQ7QDS
Cysteine K848JZ4886

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

5031

Subventions

Organisme : Medical Research Council
ID : MC_U105178934
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 090909/Z/09/Z
Pays : United Kingdom
Organisme : Medical Research Council
ID : U105178934
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/R009015/1
Pays : United Kingdom
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : NIGMS NIH HHS
ID : R35 GM119525
Pays : United States

Références

Burd, C. & Cullen, P. J. Retromer: a master conductor of endosome sorting. Cold Spring Harb. Perspect. Biol. 6, a016774 (2014).
pubmed: 24492709 pmcid: 3941235 doi: 10.1101/cshperspect.a016774
Chen, K. E., Healy, M. D. & Collins, B. M. Towards a molecular understanding of endosomal trafficking by Retromer and Retriever. Traffic 20, 465–478 (2019).
pubmed: 30993794 doi: 10.1111/tra.12649 pmcid: 30993794
Seaman, M. N. The retromer complex - endosomal protein recycling and beyond. J. Cell Sci. 125, 4693–4702 (2012).
pubmed: 23148298 pmcid: 3517092 doi: 10.1242/jcs.103440
Trousdale, C. & Kim, K. Retromer: Structure, function, and roles in mammalian disease. Eur. J. Cell Biol. 94, 513–521 (2015).
pubmed: 26220253 doi: 10.1016/j.ejcb.2015.07.002 pmcid: 26220253
Koumandou, V. L. et al. Evolutionary reconstruction of the retromer complex and its function in Trypanosoma brucei. J. Cell Sci. 124, 1496–1509 (2011).
pubmed: 21502137 pmcid: 3078816 doi: 10.1242/jcs.081596
Lee, J. J., Radice, G., Perkins, C. P. & Costantini, F. Identification and characterization of a novel, evolutionarily conserved gene disrupted by the murine H beta 58 embryonic lethal transgene insertion. Development 115, 277–288 (1992).
pubmed: 1638986 pmcid: 1638986
Radice, G., Lee, J. J. & Costantini, F. H beta 58, an insertional mutation affecting early postimplantation development of the mouse embryo. Development 111, 801–811 (1991).
pubmed: 1879343 pmcid: 1879343
Reitz, C. Retromer dysfunction and neurodegenerative disease. Curr. Genomics 19, 279–288 (2018).
pubmed: 29755290 pmcid: 5930449 doi: 10.2174/1389202919666171024122809
Harterink, M. et al. A SNX3-dependent retromer pathway mediates retrograde transport of the Wnt sorting receptor Wntless and is required for Wnt secretion. Nat. Cell Biol. 13, 914–923 (2011).
pubmed: 21725319 pmcid: 4052212 doi: 10.1038/ncb2281
Rojas, R., Kametaka, S., Haft, C. R. & Bonifacino, J. S. Interchangeable but essential functions of SNX1 and SNX2 in the association of retromer with endosomes and the trafficking of mannose 6-phosphate receptors. Mol. Cell Biol. 27, 1112–1124 (2007).
pubmed: 17101778 doi: 10.1128/MCB.00156-06 pmcid: 17101778
Temkin, P. et al. SNX27 mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signalling receptors. Nat. Cell Biol. 13, 715–721 (2011).
pubmed: 21602791 pmcid: 3113693 doi: 10.1038/ncb2252
Wassmer, T. et al. A loss-of-function screen reveals SNX5 and SNX6 as potential components of the mammalian retromer. J. Cell Sci. 120, 45–54 (2007).
pubmed: 17148574 doi: 10.1242/jcs.03302 pmcid: 17148574
Gomez, T. S. & Billadeau, D. D. A FAM21-containing WASH complex regulates retromer-dependent sorting. Dev. Cell 17, 699–711 (2009).
pubmed: 19922874 pmcid: 2803077 doi: 10.1016/j.devcel.2009.09.009
Harbour, M. E. et al. The cargo-selective retromer complex is a recruiting hub for protein complexes that regulate endosomal tubule dynamics. J. Cell Sci. 123, 3703–3717 (2010).
pubmed: 20923837 pmcid: 2964111 doi: 10.1242/jcs.071472
Jimenez-Orgaz, A. et al. Control of RAB7 activity and localization through the retromer-TBC1D5 complex enables RAB7-dependent mitophagy. EMBO J. 37, 235–254 (2018).
pubmed: 29158324 doi: 10.15252/embj.201797128 pmcid: 29158324
Seaman, M. N., Harbour, M. E., Tattersall, D., Read, E. & Bright, N. Membrane recruitment of the cargo-selective retromer subcomplex is catalysed by the small GTPase Rab7 and inhibited by the Rab-GAP TBC1D5. J. Cell Sci. 122, 2371–2382 (2009).
pubmed: 19531583 pmcid: 2704877 doi: 10.1242/jcs.048686
Shi, A. et al. Regulation of endosomal clathrin and retromer-mediated endosome to Golgi retrograde transport by the J-domain protein RME-8. EMBO J. 28, 3290–3302 (2009).
pubmed: 19763082 pmcid: 2776105 doi: 10.1038/emboj.2009.272
Zhang, J. et al. Rabankyrin-5 interacts with EHD1 and Vps26 to regulate endocytic trafficking and retromer function. Traffic 13, 745–757 (2012).
pubmed: 22284051 pmcid: 3613124 doi: 10.1111/j.1600-0854.2012.01334.x
Hesketh, G. G. et al. VARP is recruited on to endosomes by direct interaction with retromer, where together they function in export to the cell surface. Dev. Cell 29, 591–606 (2014).
pubmed: 24856514 pmcid: 4059916 doi: 10.1016/j.devcel.2014.04.010
McGough, I. J. et al. Identification of molecular heterogeneity in SNX27-retromer-mediated endosome-to-plasma-membrane recycling. J. Cell Sci. 127, 4940–4953 (2014).
pubmed: 25278552 pmcid: 4231307 doi: 10.1242/jcs.156299
Burgo, A. et al. Role of Varp, a Rab21 exchange factor and TI-VAMP/VAMP7 partner, in neurite growth. EMBO Rep. 10, 1117–1124 (2009).
pubmed: 19745841 pmcid: 2759737 doi: 10.1038/embor.2009.186
Schafer, I. B. et al. The binding of Varp to VAMP7 traps VAMP7 in a closed, fusogenically inactive conformation. Nat. Struct. Mol. Biol. 19, 1300–1309 (2012).
pubmed: 23104059 pmcid: 3605791 doi: 10.1038/nsmb.2414
Tamura, K. et al. Varp is a novel Rab32/38-binding protein that regulates Tyrp1 trafficking in melanocytes. Mol. Biol. Cell 20, 2900–2908 (2009).
pubmed: 19403694 pmcid: 2695797 doi: 10.1091/mbc.e08-12-1161
Zhang, X., He, X., Fu, X. Y. & Chang, Z. Varp is a Rab21 guanine nucleotide exchange factor and regulates endosome dynamics. J. Cell Sci. 119, 1053–1062 (2006).
pubmed: 16525121 doi: 10.1242/jcs.02810 pmcid: 16525121
Burgo, A. et al. A molecular network for the transport of the TI-VAMP/VAMP7 vesicles from cell center to periphery. Dev. Cell 23, 166–180 (2012).
pubmed: 22705394 doi: 10.1016/j.devcel.2012.04.019 pmcid: 22705394
Linding, R., Russell, R. B., Neduva, V. & Gibson, T. J. GlobPlot: exploring protein sequences for globularity and disorder. Nucleic Acids Res. 31, 3701–3708 (2003).
pubmed: 12824398 pmcid: 169197 doi: 10.1093/nar/gkg519
Collins, B. M., Skinner, C. F., Watson, P. J., Seaman, M. N. & Owen, D. J. Vps29 has a phosphoesterase fold that acts as a protein interaction scaffold for retromer assembly. Nat. Struct. Mol. Biol. 12, 594–602 (2005).
pubmed: 15965486 doi: 10.1038/nsmb954 pmcid: 15965486
Eustermann, S. et al. Structural basis of detection and signaling of DNA single-strand breaks by human PARP-1. Mol. Cell 60, 742–754 (2015).
pubmed: 26626479 pmcid: 4678113 doi: 10.1016/j.molcel.2015.10.032
Gobl, C., Madl, T., Simon, B. & Sattler, M. NMR approaches for structural analysis of multidomain proteins and complexes in solution. Prog. Nucl. Magn. Reson Spectrosc. 80, 26–63 (2014).
pubmed: 24924266 doi: 10.1016/j.pnmrs.2014.05.003 pmcid: 24924266
Mackereth, C. D. et al. Multi-domain conformational selection underlies pre-mRNA splicing regulation by U2AF. Nature 475, 408–411 (2011).
pubmed: 21753750 doi: 10.1038/nature10171 pmcid: 21753750
Wishart, D. S. & Sykes, B. D. The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J. Biomol. NMR 4, 171–180 (1994).
pubmed: 8019132 doi: 10.1007/BF00175245 pmcid: 8019132
Harbour, M. E. & Seaman, M. N. Evolutionary variations of VPS29, and their implications for the heteropentameric model of retromer. Commun. Integr. Biol. 4, 619–622 (2011).
pubmed: 22046480 pmcid: 3204146 doi: 10.4161/cib.16855
Krissinel, E. Stock-based detection of protein oligomeric states in jsPISA. Nucleic Acids Res. 43, W314–W319 (2015).
pubmed: 25908787 pmcid: 4489313 doi: 10.1093/nar/gkv314
Andreini, C., Bertini, I. & Cavallaro, G. Minimal functional sites allow a classification of zinc sites in proteins. PLoS ONE 6, e26325 (2011).
pubmed: 22043316 pmcid: 3197139 doi: 10.1371/journal.pone.0026325
Kluska, K., Adamczyk, J. & Krezel, A. Metal binding properties of zinc fingers with a naturally altered metal binding site. Metallomics 10, 248–263 (2018).
pubmed: 29230465 doi: 10.1039/C7MT00256D pmcid: 29230465
Medina, A. et al. ALEPH: a network-oriented approach for the generation of fragment-based libraries and for structure interpretation. Acta Crystallogr. D. Struct. Biol. 76, 193–208 (2020).
pubmed: 32133985 pmcid: 7057218 doi: 10.1107/S2059798320001679
Steinberg, F. et al. A global analysis of SNX27-retromer assembly and cargo specificity reveals a function in glucose and metal ion transport. Nat. Cell Biol. 15, 461–471 (2013).
pubmed: 23563491 pmcid: 4052425 doi: 10.1038/ncb2721
Seaman, M. N. J., Mukadam, A. S. & Breusegem, S. Y. Inhibition of TBC1D5 activates Rab7a and can enhance the function of the retromer cargo-selective complex. J. Cell Sci. 131, 217398 (2018).
de Beer, T. et al. Molecular mechanism of NPF recognition by EH domains. Nat. Struct. Biol. 7, 1018–1022 (2000).
pubmed: 11062555 doi: 10.1038/80924 pmcid: 11062555
Edeling, M. A., Smith, C. & Owen, D. Life of a clathrin coat: insights from clathrin and AP structures. Nat. Rev. Mol. Cell Biol. 7, 32–44 (2006).
pubmed: 16493411 doi: 10.1038/nrm1786 pmcid: 16493411
Mukhopadhyay, A., Pan, X., Lambright, D. G. & Tissenbaum, H. A. An endocytic pathway as a target of tubby for regulation of fat storage. EMBO Rep. 8, 931–938 (2007).
pubmed: 17762880 pmcid: 2002550 doi: 10.1038/sj.embor.7401055
Barlocher, K. et al. Structural insights into Legionella RidL-Vps29 retromer subunit interaction reveal displacement of the regulator TBC1D5. Nat. Commun. 8, 1543 (2017).
pubmed: 29146912 pmcid: 5691146 doi: 10.1038/s41467-017-01512-5
Jia, D. et al. Structural and mechanistic insights into regulation of the retromer coat by TBC1d5. Nat. Commun. 7, 13305 (2016).
pubmed: 27827364 pmcid: 5105194 doi: 10.1038/ncomms13305
Romano-Moreno, M. et al. Molecular mechanism for the subversion of the retromer coat by the Legionella effector RidL. Proc. Natl Acad. Sci. USA 114, E11151–E11160 (2017).
pubmed: 29229824 doi: 10.1073/pnas.1715361115 pmcid: 29229824
Yao, J. et al. Mechanism of inhibition of retromer transport by the bacterial effector RidL. Proc. Natl Acad. Sci. USA 115, E1446–E1454 (2018).
pubmed: 29386389 doi: 10.1073/pnas.1717383115 pmcid: 29386389
Haft, C. R. et al. Human orthologs of yeast vacuolar protein sorting proteins Vps26, 29, and 35: assembly into multimeric complexes. Mol. Biol. Cell 11, 4105–4116 (2000).
pubmed: 11102511 pmcid: 15060 doi: 10.1091/mbc.11.12.4105
Kovtun, O. et al. Structure of the membrane-assembled retromer coat determined by cryo-electron tomography. Nature 561, 561–564 (2018).
pubmed: 30224749 pmcid: 6173284 doi: 10.1038/s41586-018-0526-z
Kendall, A. K. et al. Mammalian retromer is an adaptable scaffold for cargo sorting from endosomes. Structure 28, 393–405 e394 (2020).
pubmed: 32027819 pmcid: 7145723 doi: 10.1016/j.str.2020.01.009
Lucas, M. et al. Structural mechanism for cargo recognition by the retromer complex. Cell 167, 1623–1635.e1614 (2016).
pubmed: 27889239 pmcid: 5147500 doi: 10.1016/j.cell.2016.10.056
Norwood, S. J. et al. Assembly and solution structure of the core retromer protein complex. Traffic 12, 56–71 (2011).
pubmed: 20875039 doi: 10.1111/j.1600-0854.2010.01124.x pmcid: 20875039
Dennis, M. K. et al. BLOC-1 and BLOC-3 regulate VAMP7 cycling to and from melanosomes via distinct tubular transport carriers. J. Cell Biol. 214, 293–308 (2016).
pubmed: 27482051 pmcid: 4970331 doi: 10.1083/jcb.201605090
Itzhak, D. N., Tyanova, S., Cox, J. & Borner, G. H. Global, quantitative and dynamic mapping of protein subcellular localization. Elife 5, e16950 (2016).
pubmed: 27278775 pmcid: 4959882 doi: 10.7554/eLife.16950
Roy, S., Leidal, A. M., Ye, J., Ronen, S. M. & Debnath, J. Autophagy-dependent shuttling of TBC1D5 controls plasma membrane translocation of GLUT1 and glucose uptake. Mol. Cell 67, 84–95 e85 (2017).
pubmed: 28602638 pmcid: 5522182 doi: 10.1016/j.molcel.2017.05.020
Ye, H. et al. Retromer subunit, VPS29, regulates synaptic transmission and is required for endolysosomal function in the aging brain. Elife 9, e51977 (2020).
pubmed: 32286230 pmcid: 7182434 doi: 10.7554/eLife.51977
Gabernet-Castello, C., O’Reilly, A. J., Dacks, J. B. & Field, M. C. Evolution of Tre-2/Bub2/Cdc16 (TBC) Rab GTPase-activating proteins. Mol. Biol. Cell 24, 1574–1583 (2013).
pubmed: 23485563 pmcid: 3655817 doi: 10.1091/mbc.e12-07-0557
Herman, E. K., Ali, M., Field, M. C. & Dacks, J. B. Regulation of early endosomes across eukaryotes: evolution and functional homology of Vps9 proteins. Traffic 19, 546–563 (2018).
pubmed: 29603841 pmcid: 6032885 doi: 10.1111/tra.12570
Elias, M., Brighouse, A., Gabernet-Castello, C., Field, M. C. & Dacks, J. B. Sculpting the endomembrane system in deep time: high resolution phylogenetics of Rab GTPases. J. Cell Sci. 125, 2500–2508 (2012).
pubmed: 22366452 pmcid: 3383260 doi: 10.1242/jcs.101378
Kloepper, T. H., Kienle, C. N. & Fasshauer, D. An elaborate classification of SNARE proteins sheds light on the conservation of the eukaryotic endomembrane system. Mol. Biol. Cell 18, 3463–3471 (2007).
pubmed: 17596510 pmcid: 1951749 doi: 10.1091/mbc.e07-03-0193
Vedovato, M., Rossi, V., Dacks, J. B. & Filippini, F. Comparative analysis of plant genomes allows the definition of the “Phytolongins”: a novel non-SNARE longin domain protein family. BMC Genomics 10, 510 (2009).
pubmed: 19889231 pmcid: 2779197 doi: 10.1186/1471-2164-10-510
Bean, B. D. et al. Rab5-family guanine nucleotide exchange factors bind retromer and promote its recruitment to endosomes. Mol. Biol. Cell 26, 1119–1128 (2015).
pubmed: 25609093 pmcid: 4357511 doi: 10.1091/mbc.E14-08-1281
Goody, R. S., Rak, A. & Alexandrov, K. The structural and mechanistic basis for recycling of Rab proteins between membrane compartments. Cell Mol. Life Sci. 62, 1657–1670 (2005).
pubmed: 15924270 doi: 10.1007/s00018-005-4486-8 pmcid: 15924270
Simpson, J. C. et al. A role for the small GTPase Rab21 in the early endocytic pathway. J. Cell Sci. 117, 6297–6311 (2004).
pubmed: 15561770 doi: 10.1242/jcs.01560 pmcid: 15561770
Stenmark, H. Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol. 10, 513–525 (2009).
pubmed: 19603039 doi: 10.1038/nrm2728 pmcid: 19603039
Vranken, W. F. et al. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687–696 (2005).
pubmed: 15815974 doi: 10.1002/prot.20449 pmcid: 15815974
Schwieters, C. D., Kuszewski, J. J., Tjandra, N. & Clore, G. M. The Xplor-NIH NMR molecular structure determination package. J. Magn. Reson 160, 65–73 (2003).
pubmed: 12565051 doi: 10.1016/S1090-7807(02)00014-9 pmcid: 12565051
Hierro, A. et al. Functional architecture of the retromer cargo-recognition complex. Nature 449, 1063–1067 (2007).
pubmed: 17891154 pmcid: 2377034 doi: 10.1038/nature06216
Swarbrick, J. D. et al. VPS29 is not an active metallo-phosphatase but is a rigid scaffold required for retromer interaction with accessory proteins. PLoS ONE 6, e20420 (2011).
pubmed: 21629666 pmcid: 3101248 doi: 10.1371/journal.pone.0020420
Kuszewski, J., Gronenborn, A. M. & Clore, G. M. Improving the quality of NMR and crystallographic protein structures by means of a conformational database potential derived from structure databases. Protein Sci. 5, 1067–1080 (1996).
pubmed: 8762138 pmcid: 2143426 doi: 10.1002/pro.5560050609
Hommel, U., Harvey, T. S., Driscoll, P. C. & Campbell, I. D. Human epidermal growth factor. High resolution solution structure and comparison with human transforming growth factor alpha. J. Mol. Biol. 227, 271–282 (1992).
pubmed: 1522591 doi: 10.1016/0022-2836(92)90697-I pmcid: 1522591
Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R. & Thornton, J. M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).
pubmed: 9008363 doi: 10.1007/BF00228148 pmcid: 9008363
Diamond, R. Coordinate-based cluster analysis. Acta Crystallogr. D. Biol. Crystallogr. 51, 127–135 (1995).
pubmed: 15299312 doi: 10.1107/S0907444994010723 pmcid: 15299312
Bright, N. A., Davis, L. J. & Luzio, J. P. Endolysosomes are the principal intracellular sites of acid hydrolase activity. Curr. Biol. 26, 2233–2245 (2016).
pubmed: 27498570 pmcid: 5026700 doi: 10.1016/j.cub.2016.06.046
Eddy, S. R. A probabilistic model of local sequence alignment that simplifies statistical significance estimation. PLoS Comput Biol. 4, e1000069 (2008).
pubmed: 18516236 pmcid: 2396288 doi: 10.1371/journal.pcbi.1000069
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
pubmed: 2231712 pmcid: 2231712 doi: 10.1016/S0022-2836(05)80360-2
Marchler-Bauer, A. et al. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 39, D225–D229 (2011).
pubmed: 21109532 doi: 10.1093/nar/gkq1189 pmcid: 21109532
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
pubmed: 15034147 pmcid: 15034147 doi: 10.1093/nar/gkh340

Auteurs

Harriet Crawley-Snowdon (H)

MRC Laboratory of Molecular Biology Cambridge Biomedical Campus, Francis Crick Ave, Cambridge, CB2 0QH, UK.

Ji-Chun Yang (JC)

MRC Laboratory of Molecular Biology Cambridge Biomedical Campus, Francis Crick Ave, Cambridge, CB2 0QH, UK.

Nathan R Zaccai (NR)

CIMR, The Keith Peters Building, Hills Road, Cambridge, CB2 0QQ, UK.

Luther J Davis (LJ)

CIMR, The Keith Peters Building, Hills Road, Cambridge, CB2 0QQ, UK.

Lena Wartosch (L)

CIMR, The Keith Peters Building, Hills Road, Cambridge, CB2 0QQ, UK.

Emily K Herman (EK)

Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Canada, T6G 2G3.

Nicholas A Bright (NA)

CIMR, The Keith Peters Building, Hills Road, Cambridge, CB2 0QQ, UK.

James S Swarbrick (JS)

Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, 3010, Australia.

Brett M Collins (BM)

The University of Queensland, Institute for Molecular Bioscience, St Lucia, QLD, 4072, Australia.

Lauren P Jackson (LP)

CIMR, The Keith Peters Building, Hills Road, Cambridge, CB2 0QQ, UK.
Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA.

Matthew N J Seaman (MNJ)

CIMR, The Keith Peters Building, Hills Road, Cambridge, CB2 0QQ, UK.

J Paul Luzio (JP)

CIMR, The Keith Peters Building, Hills Road, Cambridge, CB2 0QQ, UK. jpl10@cam.ac.uk.

Joel B Dacks (JB)

Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Canada, T6G 2G3. dacks@ualberta.ca.

David Neuhaus (D)

MRC Laboratory of Molecular Biology Cambridge Biomedical Campus, Francis Crick Ave, Cambridge, CB2 0QH, UK. dn@mrc-lmb.cam.ac.uk.

David J Owen (DJ)

CIMR, The Keith Peters Building, Hills Road, Cambridge, CB2 0QQ, UK. djo30@cam.ac.uk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH