Synergic Therapeutic Potential of PEA-Um Treatment and NAAA Enzyme Silencing In the Management of Neuroinflammation.
Amides
/ pharmacology
Amidohydrolases
/ antagonists & inhibitors
Animals
Biomarkers
Cell Line
Cell Survival
/ drug effects
Disease Management
Disease Susceptibility
Drug Synergism
Enzyme Activation
/ drug effects
Ethanolamines
/ pharmacology
Humans
Inflammation
/ drug therapy
Mice
Neurons
/ drug effects
Neuroprotective Agents
/ pharmacology
Palmitic Acids
/ pharmacology
Rats
glioma
microglia
neuroblastoma
neuroinflammation
oligodendrocytes
palmitoylethanolamide
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
11 Oct 2020
11 Oct 2020
Historique:
received:
31
08
2020
revised:
09
10
2020
accepted:
09
10
2020
entrez:
14
10
2020
pubmed:
15
10
2020
medline:
3
3
2021
Statut:
epublish
Résumé
Inflammation is a key element in the pathobiology of neurodegenerative diseases and sees the involvement of different neuronal and non-neuronal cells as players able to respond to inflammatory signals of immune origin. Palmitoylethanolamide (PEA) is an endogenous potent anti-inflammatory agent, in which activity is regulated by N-acylethanolamine acid amidase (NAAA), that hydrolyzes saturated or monounsaturated fatty acid ethanolamides, such as PEA. In this research, an in vitro study was performed on different neuronal (SH-SY5Y) and non-neuronal cell lines (C6, BV-2, and Mo3.13) subjected to NAAA enzyme silencing and treated with PEA ultra-micronized (PEA-um) (1, 3, and 10 μM) to increase the amount of endogenous PEA available for counteract neuroinflammation provoked by stimulation with lipopolysaccharide (LPS) (1 μg/mL) and interferon gamma (INF-γ )(100 U/mL). Cell viability was performed by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) staining, suggesting a protective effect of PEA-um (3 and 10 μM) on all cell lines studied. Western Blot analysis for inflammatory markers (Inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2)) was carried out in control and NAAA-silenced cells, highlighting how the concomitant treatment of the neuronal and non-neuronal cells with PEA-um after NAAA genic downregulation is satisfactory to counteract neuroinflammation. These in vitro findings support the protective role of endogenous PEA availability in the neuronal field, bringing interesting information for a translational point of view.
Identifiants
pubmed: 33050589
pii: ijms21207486
doi: 10.3390/ijms21207486
pmc: PMC7589809
pii:
doi:
Substances chimiques
Amides
0
Biomarkers
0
Ethanolamines
0
Neuroprotective Agents
0
Palmitic Acids
0
palmidrol
6R8T1UDM3V
Amidohydrolases
EC 3.5.-
NAAA protein, human
EC 3.5.1.-
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Références
Pain Med. 2012 Sep;13(9):1121-30
pubmed: 22845893
Br J Pharmacol. 2017 Jun;174(11):1349-1365
pubmed: 27539936
Nature. 1996 Nov 7;384(6604):83-7
pubmed: 8900284
Antioxidants (Basel). 2020 Mar 05;9(3):
pubmed: 32150935
Biochim Biophys Acta. 2010 Dec;1801(12):1274-85
pubmed: 20736084
Drug Discov Today. 2014 Oct;19(10):1632-9
pubmed: 24952959
CNS Neurol Disord Drug Targets. 2014;13(9):1530-41
pubmed: 25106636
Pharmacol Rev. 2004 Sep;56(3):387-437
pubmed: 15317910
Eur J Pharmacol. 2009 Jun 24;613(1-3):54-9
pubmed: 19386271
Sci Rep. 2015 Aug 27;5:13565
pubmed: 26310614
J Neuroinflammation. 2019 May 18;16(1):106
pubmed: 31103036
Oxid Med Cell Longev. 2018 Jan 16;2018:4720532
pubmed: 29576849
Pain. 2016 Sep;157(9):2097-103
pubmed: 27227691
Front Pharmacol. 2018 Mar 20;9:249
pubmed: 29615912
Front Cell Neurosci. 2019 Jun 13;13:263
pubmed: 31263402
Can J Physiol Pharmacol. 2006 Jan;84(1):49-59
pubmed: 16845890
Mol Neurobiol. 2019 Jun;56(6):3937-3947
pubmed: 30229438
Trends Mol Med. 2017 Jun;23(6):486-500
pubmed: 28499701
Front Pharmacol. 2017 May 30;8:308
pubmed: 28611664
ACS Chem Biol. 2015 Aug 21;10(8):1838-46
pubmed: 25874594
Prog Lipid Res. 2010 Oct;49(4):299-315
pubmed: 20152858
J Med Chem. 2012 May 24;55(10):4824-36
pubmed: 22515328
J Neuroinflammation. 2014 Aug 28;11:136
pubmed: 25164769
Curr Neuropharmacol. 2016;14(2):155-64
pubmed: 26639457
Chem Biodivers. 2007 Aug;4(8):1914-25
pubmed: 17712833
Korean J Anesthesiol. 2017 Oct;70(5):561-566
pubmed: 29046777
Cold Spring Harb Perspect Biol. 2015 Jul 01;7(8):a020537
pubmed: 26134003
Front Cell Neurosci. 2018 Mar 21;12:72
pubmed: 29618972
Sci Rep. 2019 Apr 8;9(1):5790
pubmed: 30962497
Pharmacol Res. 2014 Aug;86:11-7
pubmed: 24798679
Ann N Y Acad Sci. 2015 Sep;1351:127-40
pubmed: 26251227
J Cell Mol Med. 2018 Feb;22(2):1081-1094
pubmed: 28990726
PLoS One. 2013;8(3):e59131
pubmed: 23520554
Mol Neurobiol. 2015 Oct;52(2):1034-42
pubmed: 26055231
Cancer Res. 1973 Nov;33(11):2643-52
pubmed: 4748425
J Biol Chem. 2005 Mar 25;280(12):11082-92
pubmed: 15655246
Front Pharmacol. 2019 Jul 24;10:821
pubmed: 31396087
Pharmacol Res. 2016 Jun;108:23-30
pubmed: 27083308
Transl Psychiatry. 2018 Jan 31;8(1):32
pubmed: 29382825
Neurotherapeutics. 2016 Apr;13(2):428-38
pubmed: 26857391
FEBS J. 2013 May;280(9):1874-94
pubmed: 23425575
Drug Discov Today. 2018 Aug;23(8):1520-1529
pubmed: 29567427