Genome-wide analysis of the Firmicutes illuminates the diderm/monoderm transition.
Journal
Nature ecology & evolution
ISSN: 2397-334X
Titre abrégé: Nat Ecol Evol
Pays: England
ID NLM: 101698577
Informations de publication
Date de publication:
12 2020
12 2020
Historique:
received:
29
01
2020
accepted:
05
08
2020
pubmed:
21
10
2020
medline:
12
1
2021
entrez:
20
10
2020
Statut:
ppublish
Résumé
The transition between cell envelopes with one membrane (Gram-positive or monoderm) and those with two membranes (Gram-negative or diderm) is a fundamental open question in the evolution of Bacteria. Evidence of the presence of two independent diderm lineages, the Halanaerobiales and the Negativicutes, within the classically monoderm Firmicutes has blurred the monoderm/diderm divide and specifically anticipated that other members with an outer membrane (OM) might exist in this phylum. Here, by screening 1,639 genomes of uncultured Firmicutes for signatures of an OM, we highlight a third and deep branching diderm clade, the Limnochordia, strengthening the hypothesis of a diderm ancestor and the occurrence of independent transitions leading to the monoderm phenotype. Phyletic patterns of over 176,000 protein families constituting the Firmicutes pan-proteome identify those that strongly correlate with the diderm phenotype and suggest the existence of new potential players in OM biogenesis. In contrast, we find practically no largely conserved core of monoderms, a fact possibly linked to different ways of adapting to repeated OM losses. Phylogenetic analysis of a concatenation of main OM components totalling nearly 2,000 amino acid positions illustrates the common origin and vertical evolution of most diderm bacterial envelopes. Finally, mapping the presence/absence of OM markers onto the tree of Bacteria shows the overwhelming presence of diderm phyla and the non-monophyly of monoderm ones, pointing to an early origin of two-membraned cells and the derived nature of the Gram-positive envelope following multiple OM losses.
Identifiants
pubmed: 33077930
doi: 10.1038/s41559-020-01299-7
pii: 10.1038/s41559-020-01299-7
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1661-1672Références
Gupta, R. S. Origin of diderm (Gram-negative) bacteria: antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes. Antonie van Leeuwenhoek 100, 171–182 (2011).
pubmed: 21717204
pmcid: 3133647
Cavalier-Smith, T. The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int. J. Syst. Evol. Microbiol. 52, 7–76 (2002).
pubmed: 11837318
Tocheva, E. I., Ortega, D. R. & Jensen, G. J. Sporulation, bacterial cell envelopes and the origin of life. Nat. Rev. Microbiol. 14, 535–542 (2016).
pubmed: 28232669
pmcid: 5327842
Errington, J. L-form bacteria, cell walls and the origins of life. Open Biol. 3, 120143 (2013).
pubmed: 23303308
pmcid: 3603455
Megrian, D., Taib, N., Witwinowski, J., Beloin, C. & Gribaldo, S. One or two membranes? Diderm Firmicutes challenge the Gram-positive/Gram-negative divide. Mol. Microbiol. 113, 659–671 (2020).
pubmed: 31975449
Mavromatis, K. et al. Genome analysis of the anaerobic thermohalophilic bacterium Halothermothrix orenii. PLoS ONE 4, e4192 (2009).
pubmed: 19145256
pmcid: 2626281
Tocheva, E. I. et al. Peptidoglycan remodeling and conversion of an inner membrane into an outer membrane during sporulation elitza. Cell 146, 799–812 (2012).
Campbell, C., Sutcliffe, I. C. & Gupta, R. S. Comparative proteome analysis of Acidaminococcus intestini supports a relationship between outer membrane biogenesis in Negativicutes and Proteobacteria. Arch. Microbiol. 196, 307–310 (2014).
pubmed: 24535491
Helander, I. M., Hurme, R., Haikara, A. & Moran, A. P. Separation and characterization of two chemically distinct lipopolysaccharides in two Pectinatus species. J. Bacteriol. 174, 3348–3354 (1992).
pubmed: 1577699
pmcid: 206004
Antunes, L. C. et al. Phylogenomic analysis supports the ancestral presence of LPS-outer membranes in the firmicutes. eLife 5, e14589 (2016).
pubmed: 27580370
pmcid: 5007114
Kojima, S. et al. Cadaverine covalently linked to peptidoglycan is required for interaction between the peptidoglycan and the periplasm-exposed S-layer-homologous domain of major outer membrane protein Mep45 in Selenomonas ruminantium. J. Bacteriol. 192, 5953–5961 (2010).
pubmed: 20851903
pmcid: 2976460
Poppleton, D. I. et al. Outer membrane proteome of Veillonella parvula: a diderm firmicute of the human microbiome. Front. Microbiol. 8, 1215 (2017).
pubmed: 28713344
pmcid: 5491611
Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).
pubmed: 28894102
Taib, N. et al. Data from: Genome-wide analysis of the Firmicutes illuminates the diderm/monoderm transition. v.1 Mendeley Data http://dx.doi.org/10.17632/3pcn9779gc.1 (2020).
Yutin, N. & Galperin, M. Y. A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia. Environ. Microbiol. 15, 2631–2641 (2013).
pubmed: 23834245
pmcid: 4056668
Watanabe, M., Kojima, H. & Fukui, M. Limnochorda pilosa gen. nov., sp. nov., a moderately thermophilic, facultatively anaerobic, pleomorphic bacterium and proposal of Limnochordaceae fam. nov., Limnochordales ord. nov. and Limnochordia classis nov. in the phylum Firmicutes. Int. J. Syst. Evol. Microbiol. 65, 2378–2384 (2015).
pubmed: 25896353
Watanabe, M., Kojima, H. & Fukui, M. Complete genome sequence and cell structure of Limnochorda pilosa, a Gram-negative spore-former within the phylum Firmicutes. Int. J. Syst. Evol. Microbiol. 66, 1330–1339 (2016).
pubmed: 26743010
Silhavy, T. J., Kahne, D. & Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2, a000414 (2010).
pubmed: 20452953
pmcid: 2857177
Bos, M. P., Robert, V. & Tommassen, J. Biogenesis of the Gram-negative bacterial outer membrane. Annu. Rev. Microbiol. 61, 191–214 (2007).
pubmed: 17506684
Sperandeo, P., Martorana, A. M. & Polissi, A. The Lpt ABC transporter for lipopolysaccharide export to the cell surface. Res. Microbiol. https://doi.org/10.1016/j.resmic.2019.07.005 (2019).
Heinz, E., Selkrig, J., Belousoff, M. J. & Lithgow, T. Evolution of the translocation and assembly module (TAM). Genome Biol. Evol. 7, 1628–1643 (2015).
pubmed: 25994932
pmcid: 4494059
Noinaj, N., Guillier, M., Barnard, T. J. & Buchanan, S. K. TonB-Dependent transporters: regulation, structure, and function. Annu. Rev. Microbiol. 64, 43–60 (2010).
pubmed: 20420522
pmcid: 3108441
Hughes, G. W. et al. Evidence for phospholipid export from the bacterial inner membrane by the Mla ABC transport system. Nat. Microbiol. https://doi.org/10.1038/s41564-019-0481-y (2019).
Malinverni, J. C. & Silhavy, T. J. An ABC transport system that maintains lipid asymmetry in the Gram-negative outer membrane. Proc. Natl Acad. Sci. USA 106, 8009–8014 (2009).
pubmed: 19383799
Mukherjee, S. & Kearns, D. B. The structure and regulation of flagella in Bacillus subtilis. Annu. Rev. Genet. 48, 319–340 (2014).
pubmed: 25251856
pmcid: 4869327
Jacquier, N., Yadav, A. K., Pillonel, T., Viollier, P. H. & Greub, G. A. SpoIID homolog cleaves glycan strands at the chlamydial division septum. Mol. Biol. Physiol. 10, e01128–19 (2019).
Delsuc, F., Brinkmann, H. & Philippe, H. Phylogenomics and the reconstruction of the tree of life. Nat. Rev. Genet. 6, 361–375 (2005).
pubmed: 15861208
Cavalier-Smith, T. Rooting the tree of life by transition analyses. Biol. Direct 1, 19 (2006).
pubmed: 16834776
pmcid: 1586193
Battistuzzi, F. U. & Hedges, S. B. A major clade of prokaryotes with ancient adaptations to life on land. Mol. Biol. Evol. 26, 335–343 (2009).
pubmed: 18988685
Lake, J. A. Evidence for an early prokaryotic endosymbiosis. Nature 460, 967–971 (2009).
pubmed: 19693078
Vollmer, W. Bacterial outer membrane evolution via sporulation? Nat. Chem. Biol. 8, 14–18 (2012).
Tocheva, E. I. et al. Peptidoglycan remodeling and conversion of an inner membrane into an outer membrane during sporulation. Cell 146, 799–812 (2011).
pubmed: 21884938
pmcid: 3176627
Sutcliffe, I. C. A phylum level perspective on bacterial cell envelope architecture. Trends Microbiol. 18, 464–470 (2010).
pubmed: 20637628
Raymann, K., Brochier-Armanet, C. & Gribaldo, S. The two-domain tree of life is linked to a new root for the Archaea. Proc. Natl Acad. Sci. USA 112, 6670–6675 (2015).
pubmed: 25964353
Cavalier-Smith, T. & Chao, E. E. Y. Multidomain ribosomal protein trees and the planctobacterial origin of Neomura (eukaryotes, archaebacteria). Protoplasma 621–753 https://doi.org/10.1007/s00709-019-01442-7 (2020).
Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).
pubmed: 27572647
Vincent, A. T. et al. The mycobacterial cell envelope: a relict from the past or the result of recent evolution? Front. Microbiol. 9, 2341 (2018).
pubmed: 30369911
pmcid: 6194230
Gaisin, V. A., Kooger, R., Grouzdev, D. S., Gorlenko, V. M. & Pilhofer, M. Cryo-Electron tomography reveals the complex ultrastructural organization of multicellular filamentous chloroflexota (Chloroflexi) bacteria. Front. Microbiol. 11, 1373 (2020).
pubmed: 32670237
pmcid: 7332563
Sutcliffe, I. C. Cell envelope architecture in the chloroflexi_ a shifting frontline in a phylogenetic turf war. Environ. Microbiol. 13, 279–282 (2011).
pubmed: 20860732
Blobel, G. Intracellular protein topogenesis. Proc. Natl Acad. Sci. USA 77, 1496–1500 (1980).
pubmed: 6929499
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).
Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279–D285 (2016).
pubmed: 26673716
Johnson, L. S., Eddy, S. R. & Portugaly, E. Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinform. 11, 431 (2010).
Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).
pubmed: 9254694
pmcid: 146917
Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).
pubmed: 21988835
pmcid: 3261699
Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).
pubmed: 20626897
pmcid: 3017758
Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
pubmed: 25371430
Minh, B. Q., Nguyen, M. A. T. & Von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013).
pubmed: 23418397
pmcid: 3670741
Lartillot, N. & Philippe, H. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol. Biol. Evol. 21, 1095–1109 (2004).
pubmed: 15014145
Letunic, I. & Bork, P. Interactive Tree of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).
pubmed: 30931475
pmcid: 6602468
Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).
pubmed: 28460117
pmcid: 5850834
Huerta-Cepas, J. et al. EGGNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44, D286–D293 (2016).
pubmed: 26582926
Miele, V., Penel, S. & Duret, L. Ultra-fast sequence clustering from similarity networks with SiLiX. BMC Bioinform. 12, 116 (2011).
Miele, V. et al. High-quality sequence clustering guided by network topology and multiple alignment likelihood. Bioinformatics 28, 1078–1085 (2012).
pubmed: 22368255
R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2016).
Garcia, P. S., Jauffrit, F., Grangeasse, C. & Brochier-Armanet, C. GeneSpy, a user-friendly and flexible genomic context visualizer. Bioinformatics 35, 329–331 (2019).
pubmed: 29912383
Abby, S. S., Néron, B., Ménager, H., Touchon, M. & Rocha, E. P. C. MacSyFinder: a program to mine genomes for molecular systems with an application to CRISPR–Cas systems. PLoS ONE 9, e110726 (2014).
pubmed: 25330359
pmcid: 4201578
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
pubmed: 23329690
pmcid: 3603318
Coleman, G. A. et al. A rooted phylogeny resolves early bacterial evolution. Preprint at BioRxiv https://doi.org/10.1101/2020.07.15.205187 (2020).