Neonatal Serotonin Depletion Induces Hyperactivity and Anxiolytic-like Sex-Dependent Effects in Adult Rats.


Journal

Molecular neurobiology
ISSN: 1559-1182
Titre abrégé: Mol Neurobiol
Pays: United States
ID NLM: 8900963

Informations de publication

Date de publication:
Mar 2021
Historique:
received: 29 06 2020
accepted: 14 10 2020
pubmed: 22 10 2020
medline: 14 10 2021
entrez: 21 10 2020
Statut: ppublish

Résumé

The serotoninergic system plays an important role in the ontogeny of the mammalian central nervous system, and changes in serotonin production during development may lead to permanent changes in brain cytoarchitecture and function. The present study investigated the programming effects of neonatal serotonin depletion on behavior and molecular components of the serotoninergic system in adult male and female rats. Subcutaneous para-chlorophenylalanine (pCPA) administration (100 mg kg

Identifiants

pubmed: 33083963
doi: 10.1007/s12035-020-02181-0
pii: 10.1007/s12035-020-02181-0
doi:

Substances chimiques

Anti-Anxiety Agents 0
RNA, Messenger 0
Serotonin 333DO1RDJY

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1036-1051

Subventions

Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
ID : 2016/17968-6
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 308893/2018-2
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 010239/2016-2
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 423854/2018-6
Organisme : Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
ID : 88887.374200/2019-00

Références

Walther DJ, Bader M (2003) A unique central tryptophan hydroxylase isoform. Biochem Pharmacol 66(9):1673–1680. https://doi.org/10.1016/s0006-2952(03)00556-2
doi: 10.1016/s0006-2952(03)00556-2 pubmed: 14563478
Olivier B (2015) Serotonin: a never-ending story. Eur J Pharmacol 753:2–18. https://doi.org/10.1016/j.ejphar.2014.10.031
doi: 10.1016/j.ejphar.2014.10.031 pubmed: 25446560
Nebuka M, Ohmura Y, Izawa S, Bouchekioua Y, Nishitani N, Yoshida T, Yoshioka M (2020) Behavioral characteristics of 5-HT2C receptor knockout mice: locomotor activity, anxiety-, and fear memory-related behaviors. Behav Brain Res 379:112394. https://doi.org/10.1016/j.bbr.2019.112394
doi: 10.1016/j.bbr.2019.112394 pubmed: 31786274
Ogren SO, Eriksson TM, Elvander-Tottie E, D'Addario C, Ekstrom JC, Svenningsson P, Meister B, Kehr J et al (2008) The role of 5-HT(1A) receptors in learning and memory. Behav Brain Res 195(1):54–77. https://doi.org/10.1016/j.bbr.2008.02.023
doi: 10.1016/j.bbr.2008.02.023 pubmed: 18394726
Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, Benjamin J, Muller CR et al (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274(5292):1527–1531. https://doi.org/10.1126/science.274.5292.1527
doi: 10.1126/science.274.5292.1527 pubmed: 8929413
Miller JM, Kinnally EL, Ogden RT, Oquendo MA, Mann JJ, Parsey RV (2009) Reported childhood abuse is associated with low serotonin transporter binding in vivo in major depressive disorder. Synapse 63(7):565–573. https://doi.org/10.1002/syn.20637
doi: 10.1002/syn.20637 pubmed: 19288578 pmcid: 2858631
Medeiros MA, Costa-e-Sousa RH, Olivares EL, Cortes WS, Reis LC (2005) A reassessment of the role of serotonergic system in the control of feeding behavior. An Acad Bras Cienc 77(1):103–111. https://doi.org/10.1590/s0001-37652005000100008
doi: 10.1590/s0001-37652005000100008 pubmed: 15692681
Reis LC (2007) Role of the serotoninergic system in the sodium appetite control. An Acad Bras Cienc 79(2):261–283. https://doi.org/10.1590/s0001-37652007000200009
doi: 10.1590/s0001-37652007000200009 pubmed: 17625681
Caspi A, McClay J, Moffitt TE, Mill J, Martin J, Craig IW, Taylor A, Poulton R (2002) Role of genotype in the cycle of violence in maltreated children. Science 297(5582):851–854. https://doi.org/10.1126/science.1072290
doi: 10.1126/science.1072290 pubmed: 12161658
Chagraoui A, Thibaut F, Skiba M, Thuillez C, Bourin M (2016) 5-HT2C receptors in psychiatric disorders: a review. Prog Neuro-Psychopharmacol Biol Psychiatry 66:120–135. https://doi.org/10.1016/j.pnpbp.2015.12.006
doi: 10.1016/j.pnpbp.2015.12.006
Ichise M, Vines DC, Gura T, Anderson GM, Suomi SJ, Higley JD, Innis RB (2006) Effects of early life stress on [11C]DASB positron emission tomography imaging of serotonin transporters in adolescent peer- and mother-reared rhesus monkeys. J Neurosci 26(17):4638–4643. https://doi.org/10.1523/JNEUROSCI.5199-05.2006
doi: 10.1523/JNEUROSCI.5199-05.2006 pubmed: 16641244 pmcid: 6674071
Arborelius L, Hawks BW, Owens MJ, Plotsky PM, Nemeroff CB (2004) Increased responsiveness of presumed 5-HT cells to citalopram in adult rats subjected to prolonged maternal separation relative to brief separation. Psychopharmacology 176(3–4):248–255. https://doi.org/10.1007/s00213-004-1883-x
doi: 10.1007/s00213-004-1883-x pubmed: 15173929
Gardner KL, Hale MW, Lightman SL, Plotsky PM, Lowry CA (2009) Adverse early life experience and social stress during adulthood interact to increase serotonin transporter mRNA expression. Brain Res 1305:47–63. https://doi.org/10.1016/j.brainres.2009.09.065
doi: 10.1016/j.brainres.2009.09.065 pubmed: 19781533 pmcid: 2788613
Gardner KL, Hale MW, Oldfield S, Lightman SL, Plotsky PM, Lowry CA (2009) Adverse experience during early life and adulthood interact to elevate tph2 mRNA expression in serotonergic neurons within the dorsal raphe nucleus. Neuroscience 163(4):991–1001. https://doi.org/10.1016/j.neuroscience.2009.07.055
doi: 10.1016/j.neuroscience.2009.07.055 pubmed: 19647049 pmcid: 2760611
Harding KM, Lonstein JS (2016) Extensive juvenile “babysitting” facilitates later adult maternal responsiveness, decreases anxiety, and increases dorsal raphe tryptophan hydroxylase-2 expression in female laboratory rats. Dev Psychobiol 58(4):492–508. https://doi.org/10.1002/dev.21392
doi: 10.1002/dev.21392 pubmed: 26806471
Lesch KP, Waider J (2012) Serotonin in the modulation of neural plasticity and networks: implications for neurodevelopmental disorders. Neuron 76(1):175–191. https://doi.org/10.1016/j.neuron.2012.09.013
doi: 10.1016/j.neuron.2012.09.013 pubmed: 23040814
Frazer S, Otomo K, Dayer A (2015) Early-life serotonin dysregulation affects the migration and positioning of cortical interneuron subtypes. Transl Psychiatry 5:e644. https://doi.org/10.1038/tp.2015.147
doi: 10.1038/tp.2015.147 pubmed: 26393490 pmcid: 5068808
Bhanja S, Mohanakumar KP (2010) Early-life treatment of antiserotonin antibodies alters sensitivity to serotonin receptors, nociceptive stimulus and serotonin metabolism in adult rats. Int J Dev Neurosci 28(4):317–324. https://doi.org/10.1016/j.ijdevneu.2010.02.007
doi: 10.1016/j.ijdevneu.2010.02.007 pubmed: 20188813
Sachs BD, Rodriguiz RM, Tran HL, Iyer A, Wetsel WC, Caron MG (2015) Serotonin deficiency alters susceptibility to the long-term consequences of adverse early life experience. Psychoneuroendocrinology 53:69–81. https://doi.org/10.1016/j.psyneuen.2014.12.019
doi: 10.1016/j.psyneuen.2014.12.019 pubmed: 25602134 pmcid: 4344834
Adlard BP, Smart JL (1974) Some aspects of the behavior of young and adult rats treated with p-chlorophenylalanine in infancy. Dev Psychobiol 7(2):135–144. https://doi.org/10.1002/dev.420070206
doi: 10.1002/dev.420070206 pubmed: 4362763
Wilson CA, Pearson JR, Hunter AJ, Tuohy PA, Payne AP (1986) The effect of neonatal manipulation of hypothalamic serotonin levels on sexual activity in the adult rat. Pharmacol Biochem Behav 24(5):1175–1183. https://doi.org/10.1016/0091-3057(86)90167-x
doi: 10.1016/0091-3057(86)90167-x pubmed: 2425376
Wilson CA, Gonzalez I, Farabollini F (1992) Behavioural effects in adulthood of neonatal manipulation of brain serotonin levels in normal and androgenized females. Pharmacol Biochem Behav 41(1):91–98. https://doi.org/10.1016/0091-3057(92)90065-n
doi: 10.1016/0091-3057(92)90065-n pubmed: 1531706
Farabollini F, Hole DR, Wilson CA (1988) Behavioral effects in adulthood of serotonin depletion by P-chlorophenylalanine given neonatally to male rats. Int J Neurosci 41(3–4):187–199. https://doi.org/10.3109/00207458808990725
doi: 10.3109/00207458808990725 pubmed: 2972659
Keleta YB, Lumia AR, Anderson GM, McGinnis MY (2007) Behavioral effects of pubertal anabolic androgenic steroid exposure in male rats with low serotonin. Brain Res 1132(1):129–138. https://doi.org/10.1016/j.brainres.2006.10.097
doi: 10.1016/j.brainres.2006.10.097 pubmed: 17194457
Vitalis T, Cases O, Passemard S, Callebert J, Parnavelas JG (2007) Embryonic depletion of serotonin affects cortical development. Eur J Neurosci 26(2):331–344. https://doi.org/10.1111/j.1460-9568.2007.05661.x
doi: 10.1111/j.1460-9568.2007.05661.x pubmed: 17650110
Tissari AH (1975) Pharmacological and ultrastructural maturation of serotonergic synapses during ontogeny. Med Biol 53(1):1–14
pubmed: 1095838
Rind HB, Russo AF, Whittemore SR (2000) Developmental regulation of tryptophan hydroxylase messenger RNA expression and enzyme activity in the raphe and its target fields. Neuroscience 101(3):665–677. https://doi.org/10.1016/s0306-4522(00)00402-4
doi: 10.1016/s0306-4522(00)00402-4 pubmed: 11113315
Lukkes JL, Norman KJ, Meda S, Andersen SL (2016) Sex differences in the ontogeny of CRF receptors during adolescent development in the dorsal raphe nucleus and ventral tegmental area. Synapse 70(3):125–132. https://doi.org/10.1002/syn.21882
doi: 10.1002/syn.21882 pubmed: 26696011
Giulian D, Pohorecky LA, McEwen BS (1973) Effects of gonadal steroids upon brain 5-hydroxytryptamine levels in the neonatal rat. Endocrinology 93(6):1329–1335. https://doi.org/10.1210/endo-93-6-1329
doi: 10.1210/endo-93-6-1329 pubmed: 4752883
NIH (2011) Guide for the care and use of laboratory animals. vol Institute of Laboratory Animal Resources, Commission on Life Sciences. National Research Council, 8th edn. National Institute of Health, Washington, DC
Russell WMS, Burch RL (1959) The principles of humane experimental technique, 6th edn. Methuen & Co LTD, London
Zhang J, Xue M, Mei Y, Li Z, Ceng Z, Li Y, Zhang Y, Li N et al (2020) Co-expression network of mRNAs and lncRNAs regulated by stress-linked behavioral assays. Psychopharmacology 237(2):571–582. https://doi.org/10.1007/s00213-019-05390-1
doi: 10.1007/s00213-019-05390-1 pubmed: 31760461
Cruz AP, Frei F, Graeff FG (1994) Ethopharmacological analysis of rat behavior on the elevated plus-maze. Pharmacol Biochem Behav 49(1):171–176. https://doi.org/10.1016/0091-3057(94)90472-3
doi: 10.1016/0091-3057(94)90472-3 pubmed: 7816869
Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463(1–3):3–33. https://doi.org/10.1016/s0014-2999(03)01272-x
doi: 10.1016/s0014-2999(03)01272-x pubmed: 12600700
Cheeta S, Kenny PJ, File SE (2000) Hippocampal and septal injections of nicotine and 8-OH-DPAT distinguish among different animal tests of anxiety. Prog Neuro-Psychopharmacol Biol Psychiatry 24(7):1053–1067. https://doi.org/10.1016/s0278-5846(00)00129-9
doi: 10.1016/s0278-5846(00)00129-9
Pollak DD, Rey CE, Monje FJ (2010) Rodent models in depression research: classical strategies and new directions. Ann Med 42(4):252–264. https://doi.org/10.3109/07853891003769957
doi: 10.3109/07853891003769957 pubmed: 20367120
Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Elsevier Academic Pess, San Diego
Dutra SG, Paterson A, Monteiro LR, Greenwood MP, Greenwood M, Amaral LS, Melo MR, Colombari DS et al (2020) Physiological and transcriptomic changes in the hypothalamic-neurohypophysial system after 24 hours of furosemide-induced sodium depletion. Neuroendocrinology. https://doi.org/10.1159/000505997
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262
doi: 10.1006/meth.2001.1262 pubmed: 11846609
Hora SC, Conover WJ (1984) The F statistic in the two-way layout with rank–score transformed data. J Am Stat Assoc 79(387):6–673. https://doi.org/10.1080/01621459.1984.10478095
doi: 10.1080/01621459.1984.10478095
Lopez JF, Akil H, Watson SJ (1999) Neural circuits mediating stress. Biol Psychiatry 46(11):1461–1471. https://doi.org/10.1016/s0006-3223(99)00266-8
doi: 10.1016/s0006-3223(99)00266-8 pubmed: 10599476
Vataeva LA, Kudrin VS, Vershinina EA, Mosin VM, Tiul'kova EI, Otellin VA (2007) Behavioral alteration in the adult rats prenatally exposed to para-chlorophenylalanine. Brain Res 1169:9–16. https://doi.org/10.1016/j.brainres.2007.06.056
doi: 10.1016/j.brainres.2007.06.056 pubmed: 17698045
Bindra D, Spinner N (1958) Response to different degrees of novelty: the incidence of various activities. J Exp Anal Behav 1(4):341–350. https://doi.org/10.1901/jeab.1958.1-341
doi: 10.1901/jeab.1958.1-341 pubmed: 16811232 pmcid: 1403842
Spruijt BM, van Hooff JA, Gispen WH (1992) Ethology and neurobiology of grooming behavior. Physiol Rev 72(3):825–852. https://doi.org/10.1152/physrev.1992.72.3.825
doi: 10.1152/physrev.1992.72.3.825 pubmed: 1320764
Chen GL, Miller GM (2012) Advances in tryptophan hydroxylase-2 gene expression regulation: new insights into serotonin-stress interaction and clinical implications. Am J Med Genet B Neuropsychiatr Genet 159B(2):152–171. https://doi.org/10.1002/ajmg.b.32023
doi: 10.1002/ajmg.b.32023 pubmed: 22241550 pmcid: 3587664
Chen Y, Xu H, Zhu M, Liu K, Lin B, Luo R, Chen C, Li M (2017) Stress inhibits tryptophan hydroxylase expression in a rat model of depression. Oncotarget 8(38):63247–63257. https://doi.org/10.18632/oncotarget.18780
doi: 10.18632/oncotarget.18780 pubmed: 28968985 pmcid: 5609917
Patel PD, Bochar DA, Turner DL, Meng F, Mueller HM, Pontrello CG (2007) Regulation of tryptophan hydroxylase-2 gene expression by a bipartite RE-1 silencer of transcription/neuron restrictive silencing factor (REST/NRSF) binding motif. J Biol Chem 282(37):26717–26724. https://doi.org/10.1074/jbc.M705120200
doi: 10.1074/jbc.M705120200 pubmed: 17613521
Ren J, Friedmann D, Xiong J, Liu CD, Ferguson BR, Weerakkody T, DeLoach KE, Ran C et al (2018) Anatomically defined and functionally distinct dorsal raphe serotonin sub-systems. Cell 175(2):472–487 e420. https://doi.org/10.1016/j.cell.2018.07.043
doi: 10.1016/j.cell.2018.07.043 pubmed: 30146164 pmcid: 6173627
Naslund J, Studer E, Pettersson R, Hagsater M, Nilsson S, Nissbrandt H, Eriksson E (2015) Differences in anxiety-like behavior within a batch of Wistar rats are associated with differences in serotonergic transmission, enhanced by acute SRI administration, and abolished by serotonin depletion. Int J Neuropsychopharmacol 18(8). https://doi.org/10.1093/ijnp/pyv018
Barbon A, Orlandi C, La Via L, Caracciolo L, Tardito D, Musazzi L, Mallei A, Gennarelli M et al (2011) Antidepressant treatments change 5-HT2C receptor mRNA expression in rat prefrontal/frontal cortex and hippocampus. Neuropsychobiology 63(3):160–168. https://doi.org/10.1159/000321593
doi: 10.1159/000321593 pubmed: 21228608
Naslund J, Studer E, Nilsson S, Eriksson E (2020) Expression of 22 serotonin-related genes in rat brain after sub-acute serotonin depletion or reuptake inhibition. Acta Neuropsychiatr:1–7. https://doi.org/10.1017/neu.2020.9
Srivastav S, Walitza S, Grunblatt E (2018) Emerging role of miRNA in attention deficit hyperactivity disorder: a systematic review. Atten Defic Hyperact Disord 10(1):49–63. https://doi.org/10.1007/s12402-017-0232-y
doi: 10.1007/s12402-017-0232-y pubmed: 28493018
Zhang Z, Falaleeva M, Agranat-Tamir L, Pages A, Eyras E, Sperling J, Sperling R, Stamm S (2013) The 5′ untranslated region of the serotonin receptor 2C pre-mRNA generates miRNAs and is expressed in non-neuronal cells. Exp Brain Res 230(4):387–394. https://doi.org/10.1007/s00221-013-3458-8
doi: 10.1007/s00221-013-3458-8 pubmed: 23494383 pmcid: 3787788
Tang B, Dean B, Thomas EA (2011) Disease- and age-related changes in histone acetylation at gene promoters in psychiatric disorders. Transl Psychiatry 1:e64. https://doi.org/10.1038/tp.2011.61
doi: 10.1038/tp.2011.61 pubmed: 22832356 pmcid: 3305989
Wang DV, Wang F, Liu J, Zhang L, Wang Z, Lin L (2011) Neurons in the amygdala with response-selectivity for anxiety in two ethologically based tests. PLoS One 6(4):e18739. https://doi.org/10.1371/journal.pone.0018739
doi: 10.1371/journal.pone.0018739 pubmed: 21494567 pmcid: 3073991
Rainnie DG, Asprodini EK, Shinnick-Gallagher P (1991) Inhibitory transmission in the basolateral amygdala. J Neurophysiol 66(3):999–1009. https://doi.org/10.1152/jn.1991.66.3.999
doi: 10.1152/jn.1991.66.3.999 pubmed: 1684384
Sun YN, Li LB, Zhang QJ, Hui YP, Wang Y, Zhang L, Chen L, Han LN et al (2013) The response of juxtacellular labeled GABA interneurons in the basolateral amygdaloid nucleus anterior part to 5-HT(2)A/(2)C receptor activation is decreased in rats with 6-hydroxydopamine lesions. Neuropharmacology 73:404–414. https://doi.org/10.1016/j.neuropharm.2013.06.021
doi: 10.1016/j.neuropharm.2013.06.021 pubmed: 23827319
Zajac MS, Renoir T, Perreau VM, Li S, Adams W, van den Buuse M, Hannan AJ (2018) Short-term environmental stimulation spatiotemporally modulates specific serotonin receptor gene expression and behavioral pharmacology in a sexually dimorphic manner in Huntington’s disease transgenic mice. Front Mol Neurosci 11:433. https://doi.org/10.3389/fnmol.2018.00433
doi: 10.3389/fnmol.2018.00433 pubmed: 30618600 pmcid: 6295568
Wan XQ, Zeng F, Huang XF, Yang HQ, Wang L, Shi YC, Zhang ZH, Lin S (2019) Risperidone stimulates food intake and induces body weight gain via the hypothalamic arcuate nucleus 5-HT2c receptor-NPY pathway. CNS Neurosci Ther 26:558–566. https://doi.org/10.1111/cns.13281
doi: 10.1111/cns.13281 pubmed: 31880085 pmcid: 7163792
Parker GC, Bishop C, Coscina DV (2002) Estrous cycle and food availability affect feeding induced by amygdala 5-HT receptor blockade. Pharmacol Biochem Behav 71(4):701–707. https://doi.org/10.1016/s0091-3057(01)00668-2
doi: 10.1016/s0091-3057(01)00668-2 pubmed: 11888561
Takahashi M, Tanaka J (2016) Serotonin release in the subfornical organ area induced by sodium and water intake in the rat. Physiol Behav 164(Pt A):123–128. https://doi.org/10.1016/j.physbeh.2016.04.037
doi: 10.1016/j.physbeh.2016.04.037 pubmed: 27117815
Sivukhina EV, Jirikowski GF (2016) Magnocellular hypothalamic system and its interaction with the hypothalamo-pituitary-adrenal axis. Steroids 111:21–28. https://doi.org/10.1016/j.steroids.2016.01.008
doi: 10.1016/j.steroids.2016.01.008 pubmed: 26827626
Gladue BA, Humphrys RR, Debold JF, Clemens LG (1977) Ontogeny of biogenic amine systems and modification of indole levels upon adult sexual behavior in the rat. Pharmacol Biochem Behav 7(3):253–258. https://doi.org/10.1016/0091-3057(77)90142-3
doi: 10.1016/0091-3057(77)90142-3 pubmed: 928481
Kusserow H, Davies B, Hortnagl H, Voigt I, Stroh T, Bert B, Deng DR, Fink H et al (2004) Reduced anxiety-related behaviour in transgenic mice overexpressing serotonin 1A receptors. Brain Res Mol Brain Res 129(1–2):104–116. https://doi.org/10.1016/j.molbrainres.2004.06.028
doi: 10.1016/j.molbrainres.2004.06.028 pubmed: 15469887
Mirochnik V, Bosler O, Tillet Y, Calas A, Ugrumov M (2005) Long-lasting effects of serotonin deficiency on differentiating peptidergic neurons in the rat suprachiasmatic nucleus. Int J Dev Neurosci 23(1):85–91. https://doi.org/10.1016/j.ijdevneu.2004.07.021
doi: 10.1016/j.ijdevneu.2004.07.021 pubmed: 15730890
Kokras N, Pastromas N, Papasava D, de Bournonville C, Cornil CA, Dalla C (2018) Sex differences in behavioral and neurochemical effects of gonadectomy and aromatase inhibition in rats. Psychoneuroendocrinology 87:93–107. https://doi.org/10.1016/j.psyneuen.2017.10.007
doi: 10.1016/j.psyneuen.2017.10.007 pubmed: 29054014
Kokras N, Antoniou K, Mikail HG, Kafetzopoulos V, Papadopoulou-Daifoti Z, Dalla C (2015) Forced swim test: What about females? Neuropharmacology 99:408–421. https://doi.org/10.1016/j.neuropharm.2015.03.016
doi: 10.1016/j.neuropharm.2015.03.016 pubmed: 25839894
Rubinow DR, Schmidt PJ, Roca CA (1998) Estrogen-serotonin interactions: implications for affective regulation. Biol Psychiatry 44(9):839–850. https://doi.org/10.1016/s0006-3223(98)00162-0
doi: 10.1016/s0006-3223(98)00162-0 pubmed: 9807639
Altemus M, Sarvaiya N, Neill Epperson C (2014) Sex differences in anxiety and depression clinical perspectives. Front Neuroendocrinol 35(3):320–330. https://doi.org/10.1016/j.yfrne.2014.05.004
doi: 10.1016/j.yfrne.2014.05.004 pubmed: 24887405 pmcid: 4890708
Bethea CL, Coleman K, Phu K, Reddy AP, Phu A (2014) Relationships between androgens, serotonin gene expression and innervation in male macaques. Neuroscience 274:341–356. https://doi.org/10.1016/j.neuroscience.2014.05.056
doi: 10.1016/j.neuroscience.2014.05.056 pubmed: 24909896 pmcid: 4109686
Charoenphandhu J, Teerapornpuntakit J, Nuntapornsak A, Krishnamra N, Charoenphandhu N (2011) Anxiety-like behaviors and expression of SERT and TPH in the dorsal raphe of estrogen- and fluoxetine-treated ovariectomized rats. Pharmacol Biochem Behav 98(4):503–510. https://doi.org/10.1016/j.pbb.2011.02.023
doi: 10.1016/j.pbb.2011.02.023 pubmed: 21382399
Zhou W, Cunningham KA, Thomas ML (2002) Estrogen regulation of gene expression in the brain: a possible mechanism altering the response to psychostimulants in female rats. Brain Res Mol Brain Res 100(1–2):75–83. https://doi.org/10.1016/s0169-328x(02)00134-1
doi: 10.1016/s0169-328x(02)00134-1 pubmed: 12008023
Naslund J, Studer E, Johansson E, Eriksson E (2016) Effects of gonadectomy and serotonin depletion on inter-individual differences in anxiety-like behaviour in male Wistar rats. Behav Brain Res 308:160–165. https://doi.org/10.1016/j.bbr.2016.04.015
doi: 10.1016/j.bbr.2016.04.015 pubmed: 27083304
Cavalcante-Lima HR, Badaue-Passos D Jr, de-Lucca W Jr, Lima HR, Costa-e-Sousa RH, Olivares EL, Cedraz-Mercez PL, Reis RO et al (2005) Chronic excitotoxic lesion of the dorsal raphe nucleus induces sodium appetite. Braz J Med Biol Res 38(11):1669–1675. https://doi.org/10.1590/s0100-879x2005001100015
doi: 10.1590/s0100-879x2005001100015 pubmed: 16258637
Pitychoutis PM, Nakamura K, Tsonis PA, Papadopoulou-Daifoti Z (2009) Neurochemical and behavioral alterations in an inflammatory model of depression: sex differences exposed. Neuroscience 159(4):1216–1232. https://doi.org/10.1016/j.neuroscience.2009.01.072
doi: 10.1016/j.neuroscience.2009.01.072 pubmed: 19409213
Clarke SN, Ossenkopp KP (1998) Taste reactivity responses in rats: influence of sex and the estrous cycle. Am J Phys 274(3):R718–R724. https://doi.org/10.1152/ajpregu.1998.274.3.R718
doi: 10.1152/ajpregu.1998.274.3.R718

Auteurs

Verónica Trujillo (V)

Laboratory of Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 862, Edifício de Ciências Biomédicas, 7° andar, Vila Clementino, São Paulo, CEP 04023-062, Brasil.
Departament of Physiology, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.

Evandro Valentim-Lima (E)

Laboratory of Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 862, Edifício de Ciências Biomédicas, 7° andar, Vila Clementino, São Paulo, CEP 04023-062, Brasil.

Rodrigo Mencalha (R)

Department of Natural Sciences, Universidade Federal do Acre, Rio Branco, Brazil.

Quézia S R Carbalan (QSR)

Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil.

Raoni C Dos-Santos (RC)

Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil.

Viviane Felintro (V)

Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil.

Carlos E N Girardi (CEN)

Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.

Rodrigo Rorato (R)

Laboratory of Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 862, Edifício de Ciências Biomédicas, 7° andar, Vila Clementino, São Paulo, CEP 04023-062, Brasil.

Danilo Lustrino (D)

Department of Physiology, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Sergipe, São Cristóvão, Brazil.

Luis C Reis (LC)

Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil.

André S Mecawi (AS)

Laboratory of Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 862, Edifício de Ciências Biomédicas, 7° andar, Vila Clementino, São Paulo, CEP 04023-062, Brasil. mecawi@unifesp.br.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH