Rational Design of Polyamine-Based Cryogels for Metal Ion Sorption.
composite sorbents
cryogel
ferrocyanides
metal ions
polyallylamine
polyethyleneimine
sorption dynamics
sorption kinetics
Journal
Molecules (Basel, Switzerland)
ISSN: 1420-3049
Titre abrégé: Molecules
Pays: Switzerland
ID NLM: 100964009
Informations de publication
Date de publication:
19 Oct 2020
19 Oct 2020
Historique:
received:
02
09
2020
revised:
13
10
2020
accepted:
14
10
2020
entrez:
22
10
2020
pubmed:
23
10
2020
medline:
27
3
2021
Statut:
epublish
Résumé
Here we report the method of fabrication of supermacroporous monolith sorbents (cryogels) via covalent cross-linking of polyallylamine (PAA) with diglycidyl ether of 1,4-butandiol. Using comparative analysis of the permeability and sorption performance of the obtained PAA cryogels and earlier developed polyethyleneimine (PEI) cryogels, we have demonstrated the advantages and disadvantages of these polymers as sorbents of heavy metal ions (Cu(II), Zn(II), Cd(II), and Ni(II)) in fixed-bed applications and as supermacroporous matrices for the fabrication of composite cryogels containing copper ferrocyanide (CuFCN) for cesium ion sorption. Applying the rate constant distribution (RCD) model to the kinetic curves of Cu(II) ion sorption on PAA and PEI cryogels, we have elucidated the difference in sorption/desorption rates and affinity constants of these materials and showed that physical sorption contributed to the Cu(II) uptake by PAA, but not to that by PEI cryogels. It was shown that PAA cryogels had significantly higher selectivity for Cu(II) sorption in the presence of Zn(II) and Cd(II) ions in comparison with that of PEI cryogels, while irreversible sorption of Co(II) ions by PEI can be used for the separation of Ni(II) and Co(II) ions. Using IR and Mössbauer spectroscopy, we have demonstrated that strong complexation of Cu(II) ions with PEI significantly affects the in situ formation of Cu(II) ferrocyanide nanosorbents leading to their inefficiency for Cs
Identifiants
pubmed: 33086660
pii: molecules25204801
doi: 10.3390/molecules25204801
pmc: PMC7587524
pii:
doi:
Substances chimiques
Chelating Agents
0
Cryogels
0
Ions
0
Metals, Heavy
0
Polyamines
0
Polyhydroxyethyl Methacrylate
25249-16-5
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Russian Foundation for Basic Research
ID : 19-33-90143
Organisme : Far East Branch, Russian Academy of Sciences
ID : State Order of the Institute of Chemistry FEB RAS № 0265-2019-0002
Références
Biomacromolecules. 2019 Apr 8;20(4):1635-1643
pubmed: 30726063
Adv Colloid Interface Sci. 2020 Feb;276:102088
pubmed: 31887574
J Colloid Interface Sci. 2015 Mar 15;442:49-59
pubmed: 25514647
J Hazard Mater. 2012 Feb 15;203-204:370-3
pubmed: 22209589
J Mater Chem B. 2014 Apr 28;2(16):2212-2219
pubmed: 32261708
Bioresour Technol. 2010 Feb;101(4):1135-40
pubmed: 19819690
J Hazard Mater. 2013 Apr 15;250-251:469-76
pubmed: 23500428
Bioresour Technol. 2011 Feb;102(4):3888-93
pubmed: 21185173
Dalton Trans. 2016 Aug 2;45(31):12372-83
pubmed: 27417529
J Colloid Interface Sci. 2018 Sep 1;525:251-259
pubmed: 29705595
Nat Methods. 2012 Jul;9(7):671-5
pubmed: 22930834
Gels. 2020 May 14;6(2):
pubmed: 32423004
Carbohydr Polym. 2019 Apr 1;209:1-9
pubmed: 30732787
Appl Radiat Isot. 2007 May;65(5):482-7
pubmed: 17270450
Carbohydr Polym. 2019 Apr 15;210:17-25
pubmed: 30732750
Water Res. 2005 May;39(10):2167-77
pubmed: 15927227
Int J Biol Macromol. 2016 Oct;91:457-64
pubmed: 27259650
Int J Biol Macromol. 2018 Dec;120(Pt B):1872-1883
pubmed: 30290252
J Hazard Mater. 2010 Sep 15;181(1-3):794-800
pubmed: 20554390
Bioseparation. 2001;10(4-5):163-88
pubmed: 12233740
J Hazard Mater. 2014 Sep 15;280:71-8
pubmed: 25128896