De novo variants in CELF2 that disrupt the nuclear localization signal cause developmental and epileptic encephalopathy.
CELF2
autistic features
de novo variant
developmental and epileptic encephalopathy
hypotonia
Journal
Human mutation
ISSN: 1098-1004
Titre abrégé: Hum Mutat
Pays: United States
ID NLM: 9215429
Informations de publication
Date de publication:
01 2021
01 2021
Historique:
received:
17
05
2020
revised:
16
09
2020
accepted:
17
10
2020
pubmed:
2
11
2020
medline:
1
4
2022
entrez:
1
11
2020
Statut:
ppublish
Résumé
We report heterozygous CELF2 (NM_006561.3) variants in five unrelated individuals: Individuals 1-4 exhibited developmental and epileptic encephalopathy (DEE) and Individual 5 had intellectual disability and autistic features. CELF2 encodes a nucleocytoplasmic shuttling RNA-binding protein that has multiple roles in RNA processing and is involved in the embryonic development of the central nervous system and heart. Whole-exome sequencing identified the following CELF2 variants: two missense variants [c.1558C>T:p.(Pro520Ser) in unrelated Individuals 1 and 2, and c.1516C>G:p.(Arg506Gly) in Individual 3], one frameshift variant in Individual 4 that removed the last amino acid of CELF2 c.1562dup:p.(Tyr521Ter), possibly resulting in escape from nonsense-mediated mRNA decay (NMD), and one canonical splice site variant, c.272-1G>C in Individual 5, also probably leading to NMD. The identified variants in Individuals 1, 2, 4, and 5 were de novo, while the variant in Individual 3 was inherited from her mosaic mother. Notably, all identified variants, except for c.272-1G>C, were clustered within 20 amino acid residues of the C-terminus, which might be a nuclear localization signal. We demonstrated the extranuclear mislocalization of mutant CELF2 protein in cells transfected with mutant CELF2 complementary DNA plasmids. Our findings indicate that CELF2 variants that disrupt its nuclear localization are associated with DEE.
Substances chimiques
CELF Proteins
0
CELF2 protein, human
0
Nerve Tissue Proteins
0
Nuclear Localization Signals
0
RNA-Binding Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
66-76Informations de copyright
© 2020 Wiley Periodicals LLC.
Références
Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., Kondrashov, A.S., & Sunyaev, S.R. (2010). A method and server for predicting damaging missense mutations. Nature Methods, 7(4), 248-249. https://doi.org/10.1038/nmeth0410-248
Aoi, H., Mizuguchi, T., Ceroni, J. R., Kim, V. E. H., Furquim, I., Honjo, R. S., Iwaki, T., Suzuki, T., Sekiguchi, F., Uchiyama, Y., Azuma, Y., Hamanaka, K., Koshimizu, E., Miyatake, S., Mitsuhashi, S., Takata, A., Miyake, N., Takeda, S., Itakura, A., … Matsumoto, N. (2019). Comprehensive genetic analysis of 57 families with clinically suspected Cornelia de Lange syndrome. Journal of Human Genetics, 64(10), 967-978. https://doi.org/10.1038/s10038-019-0643-z
Bernhofer, M., Goldberg, T., Wolf, S., Ahmed, M., Zaugg, J., Boden, M., & Rost, B. (2018). NLSdb-major update for database of nuclear localization signals and nuclear export signals. Nucleic Acids Research, 46(D1), D503-D508. https://doi.org/10.1093/nar/gkx1021
Blech-Hermoni, Y., Stillwagon, S. J., & Ladd, A. N. (2013). Diversity and conservation of CELF1 and CELF2 RNA and protein expression patterns during embryonic development. Developmental Dynamics, 242(6), 767-777. https://doi.org/10.1002/dvdy.23959
Choi, D. K., Ito, T., Tsukahara, F., Hirai, M., & Sakaki, Y. (1999). Developmentally-regulated expression of mNapor encoding an apoptosis-induced ELAV-type RNA binding protein. Gene, 237(1), 135-142. https://doi.org/10.1016/s0378-1119(99)00312-1
Choi, D. K., Yoo, K. W., Hong, S. K., Rhee, M., Sakaki, Y., & Kim, C. H. (2003). Isolation and expression of Napor/CUG-BP2 in embryo development. Biochemical and Biophysical Research Communications, 305(3), 448-454. https://doi.org/10.1016/s0006-291x(03)00789-7
Christie, M., Chang, C. W., Róna, G., Smith, K. M., Stewart, A. G., Takeda, A.A.S., Fontes, M.R.M., Stewart, M., Vértessy, B.G., Forwood, J.K., & Kobe, B. (2016). Structural biology and regulation of protein import into the nucleus. Journal of Molecular Biology, 428(10 Pt A), 2060-2090. https://doi.org/10.1016/j.jmb.2015.10.023
Dasgupta, T., & Ladd, A. N. (2012). The importance of CELF control: Molecular and biological roles of the CUG-BP, Elav-like family of RNA-binding proteins. Wiley Interdisciplinary Reviews: RNA, 3(1), 104-121. https://doi.org/10.1002/wrna.107
Deciphering Developmental Disorders Study. (2017). Prevalence and architecture of de novo mutations in developmental disorders. Nature, 542(7642), 433-438. https://doi.org/10.1038/nature21062
Halgren, C., Bache, I., Bak, M., Myatt, M. W., Anderson, C. M., Brondum-Nielsen, K., & Tommerup, N. (2012). Haploinsufficiency of CELF4 at 18q12.2 is associated with developmental and behavioral disorders, seizures, eye manifestations, and obesity. European Journal of Human Genetics, 20(12), 1315-1319. https://doi.org/10.1038/ejhg.2012.92
Hamdan, F. F., Myers, C. T., Cossette, P., Lemay, P., Spiegelman, D., Laporte, A. D., Nassif, C., Diallo, O., Monlong, J., Cadieux-Dion, M., Dobrzeniecka, S., Meloche, C., Retterer, K., Cho, M. T., Rosenfeld, J.A., Bi, W., Massicotte, C., Miguet, M., Brunga, L., … Michaud, J.L. (2017). High rate of recurrent de novo mutations in developmental and epileptic encephalopathies. American Journal of Human Genetics, 101(5), 664-685. https://doi.org/10.1016/j.ajhg.2017.09.008
Karczewski, K. J., Francioli, L. C., Tiao, G., Cummings, B. B., Alföldi, J., Wang, Q., Collins, R.L., Laricchia, K.M., Ganna, A., Birnbaum, D.P., Gauthier, L.D., Brand, H., Solomonson, M., Watts, N.A., Rhodes, D., Singer-Berk, M., England, E.M., Seaby, E.G., Kosmicki, J.A., … MacArthur, D.G. (2020). The mutational constraint spectrum quantified from variation in 141,456 humans. Nature, 581(7809), 434-443. https://doi.org/10.1038/s41586-020-2308-7
Kircher, M., Witten, D. M., Jain, P., O'Roak, B. J., Cooper, G. M., & Shendure, J. (2014). A general framework for estimating the relative pathogenicity of human genetic variants. Nature Genetics, 46(3), 310-315. https://doi.org/10.1038/ng.2892
Ladd, A. N., & Cooper, T. A. (2004). Multiple domains control the subcellular localization and activity of ETR-3, a regulator of nuclear and cytoplasmic RNA processing events. Journal of Cell Science, 117(Pt 16), 3519-3529. https://doi.org/10.1242/jcs.01194
Ladd, A. N., Stenberg, M. G., Swanson, M. S., & Cooper, T. A. (2005). Dynamic balance between activation and repression regulates pre-mRNA alternative splicing during heart development. Developmental Dynamics, 233(3), 783-793. https://doi.org/10.1002/dvdy.20382
Lee, B. J., Cansizoglu, A. E., Suel, K. E., Louis, T. H., Zhang, Z., & Chook, Y. M. (2006). Rules for nuclear localization sequence recognition by karyopherin beta 2. Cell, 126(3), 543-558. https://doi.org/10.1016/j.cell.2006.05.049
Ng, P. C., & Henikoff, S. (2003). SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Research, 31(13), 3812-3814. https://doi.org/10.1093/nar/gkg509
Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., Grody, W.W., Hegde, M., Lyon, E., Spector, E., Voelkerding, K., & Rehm, H.L. (2015). Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine, 17(5), 405-424. https://doi.org/10.1038/gim.2015.30
Schwarz, J. M., Rödelsperger, C., Schuelke, M., & Seelow, D. (2010). MutationTaster evaluates disease-causing potential of sequence alterations. Nature Methods, 7, 575-576. https://doi.org/10.1038/nmeth0810-575
Sobreira, N., Schiettecatte, F., Valle, D., & Hamosh, A. (2015). GeneMatcher: A matching tool for connecting investigators with an interest in the same gene. Human Mutation, 36(10), 928-930. https://doi.org/10.1002/humu.22844
Suel, K. E., Gu, H., & Chook, Y. M. (2008). Modular organization and combinatorial energetics of proline-tyrosine nuclear localization signals. PLOS Biology, 6(6), e137. https://doi.org/10.1371/journal.pbio.0060137
Wagner, M., Osborn, D. P. S., Gehweiler, I., Nagel, M., Ulmer, U., Bakhtiari, S., Amouri, R., Boostani, R., Hentati, F., Hockley, M.M., Hölbling, B., Schwarzmayr, T., Karimiani, E.G., Kernstock, C., Maroofian, R., Müller-Felber, W., Ozkan, E., Padilla-Lopez, S., Reich, S., … Schüle, R. (2019). Bi-allelic variants in RNF170 are associated with hereditary spastic paraplegia. Nature Communications, 10(1), 4790. https://doi.org/10.1038/s41467-019-12620-9
Wagnon, J. L., Mahaffey, C. L., Sun, W., Yang, Y., Chao, H. T., & Frankel, W. N. (2011). Etiology of a genetically complex seizure disorder in Celf4 mutant mice. Genes, Brain and Behavior, 10(7), 765-777. https://doi.org/10.1111/j.1601-183X.2011.00717.x
Xu, B., Roos, J. L., Dexheimer, P., Boone, B., Plummer, B., Levy, S., Gogos, J.A., & Karayiorgou, M. (2011). Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nature Genetics, 43(9), 864-868. https://doi.org/10.1038/ng.902
Yuen, R. K., Merico, D., Cao, H., Pellecchia, G., Alipanahi, B., Thiruvahindrapuram, B., Tong, X., Sun, Y., Cao, D., Zhang, T., Wu, X., Jin, X., Zhou, Z., Liu, X., Nalpathamkalam, T., Walker, S., Howe, J.L., Wang, Z., MacDonald, J.R., … Scherer, S.W. (2016). Genome-wide characteristics of de novo mutations in autism. NPJ Genomic Medicine, 1, 160271-1602710. https://doi.org/10.1038/npjgenmed.2016.27