De novo variants in CELF2 that disrupt the nuclear localization signal cause developmental and epileptic encephalopathy.


Journal

Human mutation
ISSN: 1098-1004
Titre abrégé: Hum Mutat
Pays: United States
ID NLM: 9215429

Informations de publication

Date de publication:
01 2021
Historique:
received: 17 05 2020
revised: 16 09 2020
accepted: 17 10 2020
pubmed: 2 11 2020
medline: 1 4 2022
entrez: 1 11 2020
Statut: ppublish

Résumé

We report heterozygous CELF2 (NM_006561.3) variants in five unrelated individuals: Individuals 1-4 exhibited developmental and epileptic encephalopathy (DEE) and Individual 5 had intellectual disability and autistic features. CELF2 encodes a nucleocytoplasmic shuttling RNA-binding protein that has multiple roles in RNA processing and is involved in the embryonic development of the central nervous system and heart. Whole-exome sequencing identified the following CELF2 variants: two missense variants [c.1558C>T:p.(Pro520Ser) in unrelated Individuals 1 and 2, and c.1516C>G:p.(Arg506Gly) in Individual 3], one frameshift variant in Individual 4 that removed the last amino acid of CELF2 c.1562dup:p.(Tyr521Ter), possibly resulting in escape from nonsense-mediated mRNA decay (NMD), and one canonical splice site variant, c.272-1G>C in Individual 5, also probably leading to NMD. The identified variants in Individuals 1, 2, 4, and 5 were de novo, while the variant in Individual 3 was inherited from her mosaic mother. Notably, all identified variants, except for c.272-1G>C, were clustered within 20 amino acid residues of the C-terminus, which might be a nuclear localization signal. We demonstrated the extranuclear mislocalization of mutant CELF2 protein in cells transfected with mutant CELF2 complementary DNA plasmids. Our findings indicate that CELF2 variants that disrupt its nuclear localization are associated with DEE.

Identifiants

pubmed: 33131106
doi: 10.1002/humu.24130
doi:

Substances chimiques

CELF Proteins 0
CELF2 protein, human 0
Nerve Tissue Proteins 0
Nuclear Localization Signals 0
RNA-Binding Proteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

66-76

Informations de copyright

© 2020 Wiley Periodicals LLC.

Références

Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., Kondrashov, A.S., & Sunyaev, S.R. (2010). A method and server for predicting damaging missense mutations. Nature Methods, 7(4), 248-249. https://doi.org/10.1038/nmeth0410-248
Aoi, H., Mizuguchi, T., Ceroni, J. R., Kim, V. E. H., Furquim, I., Honjo, R. S., Iwaki, T., Suzuki, T., Sekiguchi, F., Uchiyama, Y., Azuma, Y., Hamanaka, K., Koshimizu, E., Miyatake, S., Mitsuhashi, S., Takata, A., Miyake, N., Takeda, S., Itakura, A., … Matsumoto, N. (2019). Comprehensive genetic analysis of 57 families with clinically suspected Cornelia de Lange syndrome. Journal of Human Genetics, 64(10), 967-978. https://doi.org/10.1038/s10038-019-0643-z
Bernhofer, M., Goldberg, T., Wolf, S., Ahmed, M., Zaugg, J., Boden, M., & Rost, B. (2018). NLSdb-major update for database of nuclear localization signals and nuclear export signals. Nucleic Acids Research, 46(D1), D503-D508. https://doi.org/10.1093/nar/gkx1021
Blech-Hermoni, Y., Stillwagon, S. J., & Ladd, A. N. (2013). Diversity and conservation of CELF1 and CELF2 RNA and protein expression patterns during embryonic development. Developmental Dynamics, 242(6), 767-777. https://doi.org/10.1002/dvdy.23959
Choi, D. K., Ito, T., Tsukahara, F., Hirai, M., & Sakaki, Y. (1999). Developmentally-regulated expression of mNapor encoding an apoptosis-induced ELAV-type RNA binding protein. Gene, 237(1), 135-142. https://doi.org/10.1016/s0378-1119(99)00312-1
Choi, D. K., Yoo, K. W., Hong, S. K., Rhee, M., Sakaki, Y., & Kim, C. H. (2003). Isolation and expression of Napor/CUG-BP2 in embryo development. Biochemical and Biophysical Research Communications, 305(3), 448-454. https://doi.org/10.1016/s0006-291x(03)00789-7
Christie, M., Chang, C. W., Róna, G., Smith, K. M., Stewart, A. G., Takeda, A.A.S., Fontes, M.R.M., Stewart, M., Vértessy, B.G., Forwood, J.K., & Kobe, B. (2016). Structural biology and regulation of protein import into the nucleus. Journal of Molecular Biology, 428(10 Pt A), 2060-2090. https://doi.org/10.1016/j.jmb.2015.10.023
Dasgupta, T., & Ladd, A. N. (2012). The importance of CELF control: Molecular and biological roles of the CUG-BP, Elav-like family of RNA-binding proteins. Wiley Interdisciplinary Reviews: RNA, 3(1), 104-121. https://doi.org/10.1002/wrna.107
Deciphering Developmental Disorders Study. (2017). Prevalence and architecture of de novo mutations in developmental disorders. Nature, 542(7642), 433-438. https://doi.org/10.1038/nature21062
Halgren, C., Bache, I., Bak, M., Myatt, M. W., Anderson, C. M., Brondum-Nielsen, K., & Tommerup, N. (2012). Haploinsufficiency of CELF4 at 18q12.2 is associated with developmental and behavioral disorders, seizures, eye manifestations, and obesity. European Journal of Human Genetics, 20(12), 1315-1319. https://doi.org/10.1038/ejhg.2012.92
Hamdan, F. F., Myers, C. T., Cossette, P., Lemay, P., Spiegelman, D., Laporte, A. D., Nassif, C., Diallo, O., Monlong, J., Cadieux-Dion, M., Dobrzeniecka, S., Meloche, C., Retterer, K., Cho, M. T., Rosenfeld, J.A., Bi, W., Massicotte, C., Miguet, M., Brunga, L., … Michaud, J.L. (2017). High rate of recurrent de novo mutations in developmental and epileptic encephalopathies. American Journal of Human Genetics, 101(5), 664-685. https://doi.org/10.1016/j.ajhg.2017.09.008
Karczewski, K. J., Francioli, L. C., Tiao, G., Cummings, B. B., Alföldi, J., Wang, Q., Collins, R.L., Laricchia, K.M., Ganna, A., Birnbaum, D.P., Gauthier, L.D., Brand, H., Solomonson, M., Watts, N.A., Rhodes, D., Singer-Berk, M., England, E.M., Seaby, E.G., Kosmicki, J.A., … MacArthur, D.G. (2020). The mutational constraint spectrum quantified from variation in 141,456 humans. Nature, 581(7809), 434-443. https://doi.org/10.1038/s41586-020-2308-7
Kircher, M., Witten, D. M., Jain, P., O'Roak, B. J., Cooper, G. M., & Shendure, J. (2014). A general framework for estimating the relative pathogenicity of human genetic variants. Nature Genetics, 46(3), 310-315. https://doi.org/10.1038/ng.2892
Ladd, A. N., & Cooper, T. A. (2004). Multiple domains control the subcellular localization and activity of ETR-3, a regulator of nuclear and cytoplasmic RNA processing events. Journal of Cell Science, 117(Pt 16), 3519-3529. https://doi.org/10.1242/jcs.01194
Ladd, A. N., Stenberg, M. G., Swanson, M. S., & Cooper, T. A. (2005). Dynamic balance between activation and repression regulates pre-mRNA alternative splicing during heart development. Developmental Dynamics, 233(3), 783-793. https://doi.org/10.1002/dvdy.20382
Lee, B. J., Cansizoglu, A. E., Suel, K. E., Louis, T. H., Zhang, Z., & Chook, Y. M. (2006). Rules for nuclear localization sequence recognition by karyopherin beta 2. Cell, 126(3), 543-558. https://doi.org/10.1016/j.cell.2006.05.049
Ng, P. C., & Henikoff, S. (2003). SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Research, 31(13), 3812-3814. https://doi.org/10.1093/nar/gkg509
Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., Grody, W.W., Hegde, M., Lyon, E., Spector, E., Voelkerding, K., & Rehm, H.L. (2015). Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine, 17(5), 405-424. https://doi.org/10.1038/gim.2015.30
Schwarz, J. M., Rödelsperger, C., Schuelke, M., & Seelow, D. (2010). MutationTaster evaluates disease-causing potential of sequence alterations. Nature Methods, 7, 575-576. https://doi.org/10.1038/nmeth0810-575
Sobreira, N., Schiettecatte, F., Valle, D., & Hamosh, A. (2015). GeneMatcher: A matching tool for connecting investigators with an interest in the same gene. Human Mutation, 36(10), 928-930. https://doi.org/10.1002/humu.22844
Suel, K. E., Gu, H., & Chook, Y. M. (2008). Modular organization and combinatorial energetics of proline-tyrosine nuclear localization signals. PLOS Biology, 6(6), e137. https://doi.org/10.1371/journal.pbio.0060137
Wagner, M., Osborn, D. P. S., Gehweiler, I., Nagel, M., Ulmer, U., Bakhtiari, S., Amouri, R., Boostani, R., Hentati, F., Hockley, M.M., Hölbling, B., Schwarzmayr, T., Karimiani, E.G., Kernstock, C., Maroofian, R., Müller-Felber, W., Ozkan, E., Padilla-Lopez, S., Reich, S., … Schüle, R. (2019). Bi-allelic variants in RNF170 are associated with hereditary spastic paraplegia. Nature Communications, 10(1), 4790. https://doi.org/10.1038/s41467-019-12620-9
Wagnon, J. L., Mahaffey, C. L., Sun, W., Yang, Y., Chao, H. T., & Frankel, W. N. (2011). Etiology of a genetically complex seizure disorder in Celf4 mutant mice. Genes, Brain and Behavior, 10(7), 765-777. https://doi.org/10.1111/j.1601-183X.2011.00717.x
Xu, B., Roos, J. L., Dexheimer, P., Boone, B., Plummer, B., Levy, S., Gogos, J.A., & Karayiorgou, M. (2011). Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nature Genetics, 43(9), 864-868. https://doi.org/10.1038/ng.902
Yuen, R. K., Merico, D., Cao, H., Pellecchia, G., Alipanahi, B., Thiruvahindrapuram, B., Tong, X., Sun, Y., Cao, D., Zhang, T., Wu, X., Jin, X., Zhou, Z., Liu, X., Nalpathamkalam, T., Walker, S., Howe, J.L., Wang, Z., MacDonald, J.R., … Scherer, S.W. (2016). Genome-wide characteristics of de novo mutations in autism. NPJ Genomic Medicine, 1, 160271-1602710. https://doi.org/10.1038/npjgenmed.2016.27

Auteurs

Toshiyuki Itai (T)

Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.

Kohei Hamanaka (K)

Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.

Kazunori Sasaki (K)

Department of Molecular Biology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.

Matias Wagner (M)

Institute of Human Genetics, School of Medicine, Technische Universität München, Munich, Germany.
Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany.

Urania Kotzaeridou (U)

Department of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany.

Ines Brösse (I)

Department of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany.

Markus Ries (M)

Department of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany.

Yu Kobayashi (Y)

Department of Child Neurology, National Hospital Organization Nishiniigata Chuo Hospital, Niigata, Niigata, Japan.

Jun Tohyama (J)

Department of Child Neurology, National Hospital Organization Nishiniigata Chuo Hospital, Niigata, Niigata, Japan.

Mitsuhiro Kato (M)

Department of Pediatrics, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan.

Winnie P Ong (WP)

Department of Genetics, Kuala Lumpur Hospital, Jalan Pahang, Kuala Lumpur, Malaysia.

Hui B Chew (HB)

Department of Genetics, Kuala Lumpur Hospital, Jalan Pahang, Kuala Lumpur, Malaysia.

Kavitha Rethanavelu (K)

Department of Genetics, Kuala Lumpur Hospital, Jalan Pahang, Kuala Lumpur, Malaysia.

Emmanuelle Ranza (E)

Swiss Institute of Genomic Medicine, Medigenome, Geneva, Switzerland.

Xavier Blanc (X)

Swiss Institute of Genomic Medicine, Medigenome, Geneva, Switzerland.

Yuri Uchiyama (Y)

Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.
Rare Disease Genomics Department, Yokohama City University Hospital, Yokohama, Kanagawa, Japan.

Naomi Tsuchida (N)

Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.
Rare Disease Genomics Department, Yokohama City University Hospital, Yokohama, Kanagawa, Japan.

Atsushi Fujita (A)

Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.

Yoshiteru Azuma (Y)

Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.

Eriko Koshimizu (E)

Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.

Takeshi Mizuguchi (T)

Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.

Atsushi Takata (A)

Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.

Noriko Miyake (N)

Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.

Hidehisa Takahashi (H)

Department of Molecular Biology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.

Etsuko Miyagi (E)

Department of Obstetrics and Gynecology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.

Yoshinori Tsurusaki (Y)

Faculty of Nutritional Science, Sagami Women's University, Sagamihara, Kanagawa, Japan.

Hiroshi Doi (H)

Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.

Masataka Taguri (M)

Department of Data Science, Yokohama City University School of Data Science, Yokohama, Kanagawa, Japan.

Stylianos E Antonarakis (SE)

Swiss Institute of Genomic Medicine, Medigenome, Geneva, Switzerland.
Department of Genetic Medicine, University of Geneva Medical School, Geneva, Switzerland.

Mitsuko Nakashima (M)

Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.

Hirotomo Saitsu (H)

Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.

Satoko Miyatake (S)

Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.
Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Kanagawa, Japan.

Naomichi Matsumoto (N)

Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH