TSGIT: An N- and C-terminal tandem tag system for purification of native and intein-mediated ligation-ready proteins.
IPL
Intein
SUMO
biotin
fusion tag
protein cleavage
protein degradation
protein expression
protein ligation
purification tag
truncated protein
Journal
Protein science : a publication of the Protein Society
ISSN: 1469-896X
Titre abrégé: Protein Sci
Pays: United States
ID NLM: 9211750
Informations de publication
Date de publication:
02 2021
02 2021
Historique:
received:
18
08
2020
revised:
30
10
2020
accepted:
30
10
2020
pubmed:
6
11
2020
medline:
1
7
2021
entrez:
5
11
2020
Statut:
ppublish
Résumé
A large variety of fusion tags have been developed to improve protein expression, solubilization, and purification. Nevertheless, these tags have been combined in a rather limited number of composite tags and usually these composite tags have been dictated by traditional commercially-available expression vectors. Moreover, most commercially-available expression vectors include either N- or C-terminal fusion tags but not both. Here, we introduce TSGIT, a fusion-tag system composed of both N- and a C-terminal composite fusion tags. The system includes two affinity tags, two solubilization tags and two cleavable tags distributed at both termini of the protein of interest. Therefore, the N- and the C-terminal composite fusion tags in TSGIT are fully orthogonal in terms of both affinity selection and cleavage. For using TSGIT, we streamlined the cloning, expression, and purification procedures. Each component tag is selected to maximize its benefits toward the final construct. By expressing and partially purifying the protein of interest between the components of the TSGIT fusion, the full-length protein is selected over truncated forms, which has been a long-standing problem in protein purification. Moreover, due to the nature of the cleavable tags in TSGIT, the protein of interest is obtained in its native form without any additional undesired N- or C-terminal amino acids. Finally, the resulting purified protein is ready for efficient ligation with other proteins or peptides for downstream applications. We demonstrate the use of this system by purifying a large amount of native fluorescent mRuby3 protein and bacteriophage T7 gp2.5 ssDNA-binding protein.
Identifiants
pubmed: 33150985
doi: 10.1002/pro.3989
pmc: PMC7784762
doi:
Substances chimiques
Recombinant Fusion Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
497-512Informations de copyright
© 2020 The Authors. Protein Science published by Wiley Periodicals LLC on behalf of The Protein Society.
Références
Anal Chem. 2011 Mar 1;83(5):1800-7
pubmed: 21314134
Methods Mol Biol. 2009;497:303-17
pubmed: 19107426
J Chromatogr A. 2014 Apr 11;1337:95-105
pubmed: 24636565
Nature. 2006 Feb 2;439(7076):621-4
pubmed: 16452983
Methods Enzymol. 2015;559:111-25
pubmed: 26096506
Exp Ther Med. 2014 Nov;8(5):1375-1380
pubmed: 25289026
J Bacteriol. 1997 Oct;179(20):6378-82
pubmed: 9335286
Nature. 2015 Sep 17;525(7569):394-8
pubmed: 26322585
J Biol Chem. 1992 Jul 25;267(21):15022-31
pubmed: 1634538
Methods Mol Biol. 2011;705:87-107
pubmed: 21125382
J Vis Exp. 2014 Apr 20;(86):
pubmed: 24796313
Mass Spectrom Rev. 2002 May-Jun;21(3):183-216
pubmed: 12476442
Anal Bioanal Chem. 2008 Nov;392(5):831-8
pubmed: 18663433
ACS Synth Biol. 2015 Mar 20;4(3):249-57
pubmed: 24931615
Protein Sci. 1998 Nov;7(11):2256-64
pubmed: 9827992
Genes Dev. 1990 Feb;4(2):277-86
pubmed: 2186965
Acta Microbiol Pol. 2003;52(3):217-31
pubmed: 14743975
Nat Commun. 2019 May 8;10(1):2104
pubmed: 31068591
Science. 2003 Aug 29;301(5637):1235-8
pubmed: 12947199
Methods Enzymol. 2015;559:1-15
pubmed: 26096499
Annu Rev Microbiol. 1975;29:485-504
pubmed: 1101808
Anal Chem. 2006 May 1;78(9):3072-9
pubmed: 16642995
Front Microbiol. 2014 Apr 17;5:172
pubmed: 24860555
Appl Environ Microbiol. 2009 Aug;75(16):5424-7
pubmed: 19542329
FASEB J. 2018 Jun;32(6):3346-3360
pubmed: 29401622
Biotechnol Prog. 2019 Jan;35(1):e2736
pubmed: 30341810
FEMS Microbiol Rev. 1996 Jul;18(4):319-44
pubmed: 8703509
Curr Protoc Protein Sci. 2015 Apr 01;80:6.1.1-6.1.35
pubmed: 25829302
Protein Expr Purif. 2016 May;121:17-21
pubmed: 26739786
Curr Protoc Protein Sci. 2013 Feb;Chapter 5:Unit5.25
pubmed: 23377852
Nature. 2009 Jan 15;457(7227):336-9
pubmed: 19029884
Methods Enzymol. 2000;326:245-54
pubmed: 11036646
Protein Expr Purif. 2015 Dec;116:42-9
pubmed: 26297996
Methods Mol Biol. 2003;205:43-68
pubmed: 12491879
Front Microbiol. 2014 Feb 19;5:63
pubmed: 24600443
Methods Enzymol. 2017;592:1-26
pubmed: 28668116
Methods Enzymol. 2000;326:376-418
pubmed: 11036654
Appl Microbiol Biotechnol. 2003 Jan;60(5):523-33
pubmed: 12536251
Anal Biochem. 2004 Apr 15;327(2):278-83
pubmed: 15051546
Methods Enzymol. 2009;463:439-73
pubmed: 19892187
Saudi Pharm J. 2017 Feb;25(2):165-175
pubmed: 28344466
Biotechniques. 1999 Jul;27(1):110-4, 116, 118-20
pubmed: 10407673
Biotechnol J. 2012 May;7(5):620-34
pubmed: 22442034
Protein Pept Lett. 2013 Jan;20(1):54-60
pubmed: 22670762
MAbs. 2014;6(6):1551-9
pubmed: 25426869
Methods Mol Biol. 2017;1586:221-230
pubmed: 28470608
Semin Cell Dev Biol. 2019 Feb;86:92-101
pubmed: 29588157
J Am Chem Soc. 2006 Apr 12;128(14):4685-93
pubmed: 16594705
J Biol Chem. 2006 Sep 1;281(35):25831-40
pubmed: 16807232
Protein Expr Purif. 2013 Nov;92(1):54-61
pubmed: 24012791
Sci Rep. 2016 Feb 16;6:20889
pubmed: 26879144
EMBO J. 1992 May;11(5):1717-22
pubmed: 1582407
Chem Sci. 2014;5(1):446-461
pubmed: 24634716
J Chromatogr A. 2020 Jun 21;1621:461051
pubmed: 32268955
Methods Enzymol. 2000;326:322-40
pubmed: 11036651
J Chromatogr A. 2019 Sep 27;1602:341-349
pubmed: 31204039
Protein Expr Purif. 2011 Dec;80(2):283-93
pubmed: 21871965
Protein Sci. 2021 Feb;30(2):497-512
pubmed: 33150985