Analysis of mutational signatures with yet another package for signature analysis.

BRCAness YAPSA biomarker cancer genomics mutational signatures precision oncology

Journal

Genes, chromosomes & cancer
ISSN: 1098-2264
Titre abrégé: Genes Chromosomes Cancer
Pays: United States
ID NLM: 9007329

Informations de publication

Date de publication:
05 2021
Historique:
revised: 06 11 2020
received: 01 08 2020
accepted: 06 11 2020
pubmed: 23 11 2020
medline: 16 2 2022
entrez: 22 11 2020
Statut: ppublish

Résumé

Different mutational processes leave characteristic patterns of somatic mutations in the genome that can be identified as mutational signatures. Determining the contributions of mutational signatures to cancer genomes allows not only to reconstruct the etiology of somatic mutations, but can also be used for improved tumor classification and support therapeutic decisions. We here present the R package yet another package for signature analysis (YAPSA) to deconvolute the contributions of mutational signatures to tumor genomes. YAPSA provides in-built collections from the COSMIC and PCAWG SNV signature sets as well as the PCAWG Indel signatures and employs signature-specific cutoffs to increase sensitivity and specificity. Furthermore, YAPSA allows to determine 95% confidence intervals for signature exposures, to perform constrained stratified signature analyses to obtain enrichment and depletion patterns of the identified signatures and, when applied to whole exome sequencing data, to correct for the triplet content of individual target capture kits. With this functionality, YAPSA has proved to be a valuable tool for analysis of mutational signatures in molecular tumor boards in a precision oncology context. YAPSA is available at R/Bioconductor (http://bioconductor.org/packages/3.12/bioc/html/YAPSA.html).

Identifiants

pubmed: 33222322
doi: 10.1002/gcc.22918
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

314-331

Informations de copyright

© 2020 The Authors. Genes, Chromosomes & Cancer published by Wiley Periodicals LLC.

Références

Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415-421. https://doi.org/10.1038/nature12477.
Rubanova Y, Shi R, Harrigan CF, et al. Reconstructing evolutionary trajectories of mutation signature activities in cancer using TrackSig. Nat Commun. 2020;11(1):731. https://doi.org/10.1038/s41467-020-14352-7.
Van Hoeck A, Tjoonk NH, van Boxtel R, Cuppen E. Portrait of a cancer: mutational signature analyses for cancer diagnostics. BMC Cancer. 2019;19(1):457. https://doi.org/10.1186/s12885-019-5677-2.
Gröschel S, Hübschmann D, Raimondi F, et al. Defective homologous recombination DNA repair as therapeutic target in advanced chordoma. Nat Commun. 2019;10(1):1635. https://doi.org/10.1038/s41467-019-09633-9.
Alexandrov LB, Kim J, Haradhvala NJ, et al. The repertoire of mutational signatures in human cancer. Nature. 2020;578(7793):94-101. https://doi.org/10.1038/s41586-020-1943-3.
Rosenthal R, McGranahan N, Herrero J, Taylor BS, Swanton C. deconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution. Genome Biol. 2016;17(1):31. https://doi.org/10.1186/s13059-016-0893-4.
Shinde J, Bayard Q, Imbeaud S, et al. Palimpsest: an R package for studying mutational and structural variant signatures along clonal evolution in cancer. Bioinformatics. 2018;34(19):3380-3381. https://doi.org/10.1093/bioinformatics/bty388.
Huang PJ, Chiu LY, Lee CC, et al. MSignatureDB: a database for deciphering mutational signatures in human cancers. Nucleic Acids Res. 2018;46(D1):D964-D970. https://doi.org/10.1093/nar/gkx1133.
Huang X, Wojtowicz D, Przytycka TM. Detecting presence of mutational signatures in cancer with confidence. Bioinformatics. 2018;34:330-337. https://doi.org/10.1093/bioinformatics/btx604.
Blokzijl F, Janssen R, van Boxtel R, Cuppen E. MutationalPatterns: comprehensive genome-wide analysis of mutational processes. Genome Med. 2018;10(1):33. https://doi.org/10.1186/s13073-018-0539-0.
Schumann F, Blanc E, Messerschmidt C, Blankenstein T, Busse A, Beule D. SigsPack, a package for cancer mutational signatures. BMC Bioinformatics. 2019;20(1):450. https://doi.org/10.1186/s12859-019-3043-7.
Maura F, Degasperi A, Nadeu F, et al. A practical guide for mutational signature analysis in hematological malignancies. Nat Commun. 2019;10(1):2969. https://doi.org/10.1038/s41467-019-11037-8.
Willemsen AECAB, Krausz S, Ligtenberg MJL, et al. Molecular tumour boards and molecular diagnostics for patients with cancer in The Netherlands: experiences, challenges, and aspirations. Br J Cancer. 2019;121(1):34-36. https://doi.org/10.1038/s41416-019-0489-3.
van der Velden DL, Hoes LR, van der Wijngaart H, et al. The drug rediscovery protocol facilitates the expanded use of existing anticancer drugs. Nature. 2019;574(7776):127-131. https://doi.org/10.1038/s41586-019-1600-x.
Priestley P, Baber J, Lolkema MP, et al. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature. 2019;575(7781):210-216. https://doi.org/10.1038/s41586-019-1689-y.
Le Tourneau C, Delord J-P, Gonçalves A, et al. Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial. Lancet Oncol. 2015;16(13):1324-1334. https://doi.org/10.1016/S1470-2045(15)00188-6.
Schwaederle M, Parker BA, Schwab RB, et al. Precision oncology: the UC san Diego Moores cancer center PREDICT experience. Mol Cancer Ther. 2016;15(4):743-752. https://doi.org/10.1158/1535-7163.MCT-15-0795.
Roychowdhury S, Iyer MK, Robinson DR, et al. Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci Transl Med. 2011;3(111):111ra121. https://doi.org/10.1126/scitranslmed.3003161.
Cheng DT, Mitchell TN, Zehir A, et al. Memorial Sloan Kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT). J Mol Diagnostics. 2015;17(3):251-264. https://doi.org/10.1016/j.jmoldx.2014.12.006.
Cheng DT, Prasad M, Chekaluk Y, et al. Comprehensive detection of germline variants by MSK-IMPACT, a clinical diagnostic platform for solid tumor molecular oncology and concurrent cancer predisposition testing. BMC Med Genomics. 2017;10(1):33. https://doi.org/10.1186/s12920-017-0271-4.
Horak P, Klink B, Heining C, et al. Precision oncology based on omics data: the NCT Heidelberg experience. Int J Cancer. 2017;141(5):877-886. https://doi.org/10.1002/ijc.30828.
Horak P, Fröhling S, Glimm H. Integrating next-generation sequencing into clinical oncology: strategies, promises and pitfalls. ESMO Open. 2016;1(5):e000094. https://doi.org/10.1136/esmoopen-2016-000094.
Mullen KM, Stokkum IHM. The Lawson-Hanson Algorithm for Non-negative Least Squares (NNLS). CRAN; 2012. https://cran.r-project.org/web/packages/nnls.
Gehring JS, Fischer B, Lawrence M, Huber W. SomaticSignatures: inferring mutational signatures from single-nucleotide variants. Bioinformatics. 2015;31(22):3673-3675. https://doi.org/10.1093/bioinformatics/btv408.
Pagès H, Aboyoun P, Gentleman R, DebRoy S. Biostrings: String objects representing biological sequences, and matching algorithms 2016. https://bioconductor.org/packages/release/bioc/html/Biostrings.html.
Sing T, Sander O, Beerenwinkel N, Lengauer T. ROCR: visualizing classifier performance in R. Bioinformatics. 2005;21(20):3940-3941. https://doi.org/10.1093/bioinformatics/bti623.
Raue A, Kreutz C, Maiwald T, et al. Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics. 2009;25(15):1923-1929. https://doi.org/10.1093/bioinformatics/btp358.
Borchers HW. pracma. 2018.
Patch A-M, Christie EL, Etemadmoghadam D, et al. Whole-genome characterization of chemoresistant ovarian cancer. Nature. 2015;521(7553):489-494. https://doi.org/10.1038/nature14410.
Kleinheinz K, Bludau I, Huebschmann D, et al. ACEseq - allele specific copy number estimation from whole genome sequencing. bioRxiv. 2017. http://biorxiv.org/content/early/2017/10/29/210807.abstract.
Reisinger E, Genthner L, Kerssemakers J, et al. OTP: an automatized system for managing and processing NGS data. J Biotechnol. 2017;261:53-62. https://doi.org/10.1016/j.jbiotec.2017.08.006.
Jones DTW, Jäger N, Kool M, et al. Dissecting the genomic complexity underlying medulloblastoma. Nature. 2012;488(7409):100-105. https://doi.org/10.1038/nature11284.
Abkevich V, Timms KM, Hennessy BT, et al. Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in epithelial ovarian cancer. Br J Cancer. 2012;107(10):1776-1782. https://doi.org/10.1038/bjc.2012.451.
Wilcoxen KM, Becker M, Neff C, et al. Use of homologous recombination deficiency (HRD) score to enrich for niraparib sensitive high grade ovarian tumors. J Clin Oncol. 2015;33(15_suppl):5532. https://doi.org/10.1200/jco.2015.33.15_suppl.5532.
Telli ML, Timms KM, Reid J, et al. Homologous recombination deficiency (hrd) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clin Cancer Res. 2016;22(15):3764-3773. https://doi.org/10.1158/1078-0432.CCR-15-2477.
Popova T, Manié E, Rieunier G, et al. Ploidy and large-scale genomic instability consistently identify basal-like breast carcinomas with BRCA1/2 inactivation. Cancer Res. 2012;72(21):5454-5462. https://doi.org/10.1158/0008-5472.CAN-12-1470.
Davies H, Morganella S, Purdie CA, et al. Whole-genome sequencing reveals breast cancers with mismatch repair deficiency. Cancer Res. 2017;77(18):4755-4762. https://doi.org/10.1158/0008-5472.CAN-17-1083.
Ma J, Setton J, Lee NY, Riaz N, Powell SN. The therapeutic significance of mutational signatures from DNA repair deficiency in cancer. Nat Commun. 2018;9(1):1-12. https://doi.org/10.1038/s41467-018-05228-y.
Davies H, Glodzik D, Morganella S, et al. HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat Med. 2016;23:525. https://doi.org/10.1038/nm.4292.
Gröschel S, Bommer M, Hutter B, et al. Integration of genomics and histology revises diagnosis and enables effective therapy of refractory cancer of unknown primary with PDL1 amplification. Mol Case Stud. 2016;2(6):mcs.a001180. https://doi.org/10.1101/mcs.a001180.
Lord CJ, Ashworth A. BRCAness revisited. Nat Rev Cancer. 2016;16(2):110-120. https://doi.org/10.1038/nrc.2015.21.
Fong PC, Boss DS, Yap TA, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361(2):123-134. https://doi.org/10.1056/NEJMoa0900212.
Mateo J, Carreira S, Sandhu S, et al. DNA-repair defects and Olaparib in metastatic prostate cancer. N Engl J Med. 2015;373(18):1697-1708. https://doi.org/10.1056/NEJMoa1506859.
O'Neil NJ, Bailey ML, Hieter P. Synthetic lethality and cancer. Nat Rev Genet. 2017;18(10):613-623. https://doi.org/10.1038/nrg.2017.47.
Lord CJ, Ashworth A. PARP inhibitors: synthetic lethality in the clinic. Science. 2017;355(6330):1152-1158. https://doi.org/10.1126/science.aam7344.
Tucker H, Charles Z, Robertson J, Adam J. NICE guidance on olaparib for maintenance treatment of patients with relapsed, platinum-sensitive, BRCA mutation-positive ovarian cancer. Lancet Oncol. 2016;17(3):277-278. https://doi.org/10.1016/S1470-2045(16)00062-0.
Ray-Coquard I, Pautier P, Pignata S, et al. Olaparib plus Bevacizumab as first-line maintenance in ovarian cancer. N Engl J Med. 2019;381(25):2416-2428. https://doi.org/10.1056/NEJMoa1911361.
Ledermann J, Harter P, Gourley C, et al. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. Lancet Oncol. 2014;15(8):852-861. https://doi.org/10.1016/S1470-2045(14)70228-1.
Lheureux S, Lai Z, Dougherty BA, et al. Long-term responders on Olaparib maintenance in high-grade serous ovarian cancer: clinical and molecular characterization. Clin Cancer Res. 2017;23(15):4086-4094. https://doi.org/10.1158/1078-0432.CCR-16-2615.
Kovac M, Blattmann C, Ribi S, et al. Exome sequencing of osteosarcoma reveals mutation signatures reminiscent of BRCA deficiency. Nat Commun. 2015;6:8940. https://doi.org/10.1038/ncomms9940.
Engert F, Kovac M, Baumhoer D, Nathrath M, Fulda S. Osteosarcoma cells with genetic signatures of BRCAness are susceptible to the PARP inhibitor talazoparib alone or in combination with chemotherapeutics. Oncotarget. 2017;8(30):48794-48806. https://doi.org/10.18632/oncotarget.10720.
Chudasama P, Mughal SS, Sanders MA, et al. Integrative genomic and transcriptomic analysis of leiomyosarcoma. Nat Commun. 2018;9(1):144. https://doi.org/10.1038/s41467-017-02602-0.
Pignochino Y, Capozzi F, D'Ambrosio L, et al. PARP1 expression drives the synergistic antitumor activity of trabectedin and PARP1 inhibitors in sarcoma preclinical models. Mol Cancer. 2017;16(1):86. https://doi.org/10.1186/s12943-017-0652-5.
Grignani G, D'Ambrosio L, Pignochino Y, et al. A phase 1b trial with the combination of trabectedin and olaparib in relapsed patients (pts) with advanced and unresectable bone and soft tissue sarcomas (BSTS): an Italian sarcoma group (ISG) study. J Clin Oncol. 2016;34(15_suppl):11018. https://doi.org/10.1200/JCO.2016.34.15_suppl.11018.
Mathios D, Ruzevick J, Jackson CM, et al. PD-1, PD-L1, PD-L2 expression in the chordoma microenvironment. J Neurooncol. 2015;121(2):251-259. https://doi.org/10.1007/s11060-014-1637-5.
Nolan E, Savas P, Policheni AN, et al. Combined immune checkpoint blockade as a therapeutic strategy for BRCA1-mutated breast cancer. Sci Transl Med. 2017;9(393):eaal4922. https://doi.org/10.1126/scitranslmed.aal4922.
Pantelidou C, Sonzogni O, Taveira MDO, et al. Parp inhibitor efficacy depends on CD8+ T-cell recruitment via intratumoral sting pathway activation in brca-deficient models of triple-negative breast cancer. Cancer Discov. 2019;9(6):722-737. https://doi.org/10.1158/2159-8290.CD-18-1218.
Sahm F, Toprak UH, Hübschmann D, et al. Meningiomas induced by low-dose radiation carry structural variants of NF2 and a distinct mutational signature. Acta Neuropathol. 2017;134(1):155-158. https://doi.org/10.1007/s00401-017-1715-9.
Paramasivam N, Hübschmann D, Toprak UH, et al. Mutational patterns and regulatory networks in epigenetic subgroups of meningioma. Acta Neuropathol. 2019;138(2):295-308. https://doi.org/10.1007/s00401-019-02008-w.
Behjati S, Gundem G, Wedge DC, et al. Mutational signatures of ionizing radiation in second malignancies. Nat Commun. 2016;7:12605. https://doi.org/10.1038/ncomms12605.
Dieter SM, Heining C, Agaimy A, et al. Mutant KIT as imatinib-sensitive target in metastatic sinonasal carcinoma. Ann Oncol. 2017;28(1):142-148. https://doi.org/10.1093/annonc/mdw446.
Gröschel S, Bommer M, Hutter B, et al. Integration of genomics and histology revises diagnosis and enables effective therapy of refractory cancer of unknown primary with PDL1 amplification. Cold Spring Harb Mol Case Stud. 2016;2(6):a001180.
Horak P, Weischenfeldt J, von Amsberg G, et al. Response to olaparib in a PALB2 germline mutated prostate cancer and genetic events associated with resistance. Mol Case Stud. 2019;5(2):a003657. https://doi.org/10.1101/mcs.a003657.

Auteurs

Daniel Hübschmann (D)

Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.
Pattern Recognition and Digital Medicine, Heidelberg Institute of Stem Cell Technology and Experimental Medicine (HI-STEM), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.
German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.
Department of Pediatric Immunology, Hematology and Oncology, University Hospital Heidelberg, Heidelberg, Germany.

Lea Jopp-Saile (L)

Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.
Pattern Recognition and Digital Medicine, Heidelberg Institute of Stem Cell Technology and Experimental Medicine (HI-STEM), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.
Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.

Carolin Andresen (C)

Pattern Recognition and Digital Medicine, Heidelberg Institute of Stem Cell Technology and Experimental Medicine (HI-STEM), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.
Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.

Stephen Krämer (S)

Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.

Zuguang Gu (Z)

Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.
DKFZ-HIPO (Heidelberg Center for Personalized Oncology), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.

Christoph E Heilig (CE)

German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.
Department of Translational Medical Oncology, NCT Heidelberg and DKFZ, Heidelberg, Germany.

Simon Kreutzfeldt (S)

German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.
Department of Translational Medical Oncology, NCT Heidelberg and DKFZ, Heidelberg, Germany.

Veronica Teleanu (V)

German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.
Department of Translational Medical Oncology, NCT Heidelberg and DKFZ, Heidelberg, Germany.

Stefan Fröhling (S)

German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.
Department of Translational Medical Oncology, NCT Heidelberg and DKFZ, Heidelberg, Germany.

Roland Eils (R)

Center for Digital Health, Berlin Institute of Health and Charité - Universitätsmedizin Berlin, Berlin, Germany.
Health Data Science Unit, University Hospital Heidelberg, Heidelberg, Germany.

Matthias Schlesner (M)

Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.
Chair of Biomedical Informatics, Data Mining and Data Analytics, Faculty of Applied Computer Science and Medical Faculty, University of Augsburg, Augsburg, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH