Cenobamate: Neuroprotective Potential of a New Antiepileptic Drug.
Animals
Carbamates
/ therapeutic use
Central Nervous System Diseases
/ drug therapy
Chlorophenols
/ therapeutic use
Drug Repositioning
GABA-A Receptor Agonists
/ therapeutic use
Glutamic Acid
/ metabolism
Humans
Neuroprotective Agents
/ therapeutic use
Signal Transduction
/ drug effects
Tetrazoles
/ therapeutic use
Voltage-Gated Sodium Channel Blockers
/ therapeutic use
Cenobamate
GABA
Glutamate
Neuroprotection
Secondary neuronal injury
Voltage-gated sodium channels
Journal
Neurochemical research
ISSN: 1573-6903
Titre abrégé: Neurochem Res
Pays: United States
ID NLM: 7613461
Informations de publication
Date de publication:
Mar 2021
Mar 2021
Historique:
received:
19
07
2020
accepted:
20
11
2020
revised:
17
11
2020
pubmed:
1
12
2020
medline:
8
9
2021
entrez:
30
11
2020
Statut:
ppublish
Résumé
Central nervous system (CNS) injuries annually afflict approximately 2.7 million people in United States only, inflicting costs of nearly 100 billion US dollars. The gravity of this problem is a consequence of severe and prolonged disability of patients due to a scarce regeneration of CNS, along with the lack of efficient neuroprotective and neuroregenrative therapies. Therefore, the first and most important task in managing the CNS injury is reduction of the damaged area, and apoptosis of neurons occurs not only during the trauma, but in great extent within the following minutes and hours. This process, called secondary injury phase, is a result of trauma-induced metabolic changes in nervous tissue and neuron apoptosis. Cenobamate is a new antiepileptic drug approved by FDA on November 21, 2019. Regardless of its primary purpose, cenobamate, as a blocker of voltage-gated sodium channels and positive modulator of GABAa receptors, it appears to be a promising neuroprotective agent. Moreover, through activation of PI3K/Akt-CREB-BDNF pathway, it leads to the increase of anti-apoptotic factor levels and the decrease of pro-apoptotic factor levels, which induce inhibition of apoptosis and increase neuron survival. Similarly to riluzole, cenobamate could be an important part of a perioperative procedure in neurosurgery, decreasing the occurrence of neurological deficits. Provided that cenobamate will be effective in aforementioned conditions, it could improve treatment outcomes of millions of patients every year, thereby an extensive investigation of its efficacy as a neuroprotective treatment after central nervous system trauma should follow.
Identifiants
pubmed: 33252771
doi: 10.1007/s11064-020-03188-8
pii: 10.1007/s11064-020-03188-8
doi:
Substances chimiques
Carbamates
0
Chlorophenols
0
GABA-A Receptor Agonists
0
Neuroprotective Agents
0
Tetrazoles
0
Voltage-Gated Sodium Channel Blockers
0
Glutamic Acid
3KX376GY7L
Cenobamate
P85X70RZWS
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
439-446Références
Aminoff MJ, François Boller, Swaab DF, Grafman J, Salazar AM (2015) Handbook of clinical neurology. Elsevier, Oxford
Hall MJ, Levant S, DeFrances CJ (2012) Hospitalization for stroke in U.S. hospitals, 1989-2009. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics, Hyattsville
Fehlings M, Weidner N, Vialle LR (2016) Spinal cord injury and regeneration with 31 figures. Thieme, New York
Keam SJ (2020) Cenobamate: first approval. Drugs 80(1):73–78. https://doi.org/10.1007/s40265-019-01250-6
doi: 10.1007/s40265-019-01250-6
pubmed: 31933170
Bialer M, Johannessen SI, Levy RH, Perucca E, Tomson T, White HS (2010) Progress report on new antiepileptic drugs: a summary of the Tenth Eilat Conference (EILAT X). Epilepsy Res 92(2–3):89–124. https://doi.org/10.1016/j.eplepsyres.2010.09.001
doi: 10.1016/j.eplepsyres.2010.09.001
pubmed: 20970964
Bialer M, Johannessen SI, Levy RH, Perucca E, Tomson T, White HS (2013) Progress report on new antiepileptic drugs: a summary of the Eleventh Eilat conference (EILAT XI). Epilepsy Res 103(1):2–30. https://doi.org/10.1016/j.eplepsyres.2012.10.001
doi: 10.1016/j.eplepsyres.2012.10.001
pubmed: 23219031
Agrawal S, Fehlings M (1996) Mechanisms of secondary injury to spinal cord axons in vitro: role of Na+, Na (+)-K (+)-ATPase, the Na (+)-H+ exchanger, and the Na (+)-Ca2+ exchanger. J Neurosci 16(2):545–552. https://doi.org/10.1523/jneurosci.16-02-00545.1996
doi: 10.1523/jneurosci.16-02-00545.1996
pubmed: 8551338
pmcid: 6578655
Pearn ML, Niesman IR, Egawa J, Sawada A, Almenar-Queralt A, Shah SB, Head BP (2016) Pathophysiology associated with traumatic brain injury: current treatments and potential novel therapeutics. Cell Mol Neurobiol 37(4):571–585. https://doi.org/10.1007/s10571-016-0400-1
doi: 10.1007/s10571-016-0400-1
pubmed: 27383839
Nagoshi N, Nakashima H, Fehlings M (2015) Riluzole as a neuroprotective drug for spinal cord injury: from bench to bedside. Molecules 20(5):7775–7789. https://doi.org/10.3390/molecules20057775
doi: 10.3390/molecules20057775
pubmed: 25939067
pmcid: 6272473
Wilson JR, Fehlings MG (2014) Riluzole for acute traumatic spinal cord injury: a promising neuroprotective treatment strategy. World Neurosurg 81(5–6):825–829. https://doi.org/10.1016/j.wneu.2013.01.001
doi: 10.1016/j.wneu.2013.01.001
pubmed: 23295632
Lancelot E, Beal MF (1998) Chapter 21 glutamate toxicity in chronic neurodegenerative disease. In: Progress in brain research progress in brain research, vol 116, pp 331–347. https://doi.org/10.1016/s0079-6123(08)60446-x
Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11(10):682–696. https://doi.org/10.1038/nrn2911
doi: 10.1038/nrn2911
pubmed: 20842175
pmcid: 2948541
Pál B (2018) Involvement of extrasynaptic glutamate in physiological and pathophysiological changes of neuronal excitability. Cell Mol Life Sci 75(16):2917–2949. https://doi.org/10.1007/s00018-018-2837-5
doi: 10.1007/s00018-018-2837-5
pubmed: 29766217
Okubo Y, Sekiya H, Namiki S, Sakamoto H, Iinuma S, Yamasaki M, Iino M (2009) Imaging extrasynaptic glutamate dynamics in the brain. Neurosci Res. https://doi.org/10.1016/j.neures.2009.09.713
doi: 10.1016/j.neures.2009.09.713
Mahmoud S, Gharagozloo M, Simard C, Gris D (2019) Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release. Cells 8(2):184. https://doi.org/10.3390/cells8020184
doi: 10.3390/cells8020184
pmcid: 6406900
Pitkänen A, Kubova H (2004) Antiepileptic drugs in neuroprotection. Expert Opin Pharmacother 5(4):777–798. https://doi.org/10.1517/14656566.5.4.777
doi: 10.1517/14656566.5.4.777
pubmed: 15102563
Novelli A, Groppetti A, Rossoni G, Manfredi B, Ferrero-Gutiérrez A, Pérez-Gómez A, Desogus CM, Fernández-Sánchez MT (2007) Nefopam is more potent than carbamazepine for neuroprotection against veratridine in vitro and has anticonvulsant properties against both electrical and chemical stimulation. Amino Acids 32(3):323–332. https://doi.org/10.1007/s00726-006-0419-6
doi: 10.1007/s00726-006-0419-6
pubmed: 17021653
Papazisis G, Kallaras K, Kaiki-Astara A, Pourzitaki C, Tzachanis D, Dagklis T, Kouvelas D (2008) Neuroprotection by lamotrigine in a rat model of neonatal hypoxic-ischaemic encephalopathy. Int J Neuropsychopharmacol 11(3):321–329. https://doi.org/10.1017/s1461145707008012
doi: 10.1017/s1461145707008012
pubmed: 17897482
Yan BC, Wang J, Rui Y, Cao J, Xu P, Jiang D, Zhu X, Won M-H, Bo P, Su P (2019) Neuroprotective effects of gabapentin against cerebral ischemia reperfusion-induced neuronal autophagic injury via regulation of the PI3K/Akt/mTOR signaling pathways. J Neuropathol Exp Neurol 78(2):157–171. https://doi.org/10.1093/jnen/nly119
doi: 10.1093/jnen/nly119
pubmed: 30597043
Traa BS, Mulholland JD, Kadam SD, Johnston MV, Comi AM (2008) Gabapentin neuroprotection and seizure suppression in immature mouse brain ischemia. Pediatr Res 64(1):81–85. https://doi.org/10.1203/pdr.0b013e318174e70e
doi: 10.1203/pdr.0b013e318174e70e
pubmed: 18391849
pmcid: 2565570
Landucci E, Filippi L, Gerace E, Catarzi S, Guerrini R, Pellegrini-Giampietro DE (2018) Neuroprotective effects of topiramate and memantine in combination with hypothermia in hypoxic-ischemic brain injury in vitro and in vivo. Neurosci Lett 6(668):103–107. https://doi.org/10.1016/j.neulet.2018.01.023
doi: 10.1016/j.neulet.2018.01.023
Baudel MASM-A, Poole AV, Darlison MG (2016) Chloride co-transporters as possible therapeutic targets for stroke. J Neurochem 140(2):195–209. https://doi.org/10.1111/jnc.13901
doi: 10.1111/jnc.13901
Vasconcelos NL, Gomes ED, Oliveira EP, Silva CJ, Lima R, Sousa N, Silva NA (2016) Combining neuroprotective agents: effect of riluzole and magnesium in a rat model of thoracic spinal cord injury. Spine J 16(8):1015–1024. https://doi.org/10.1016/j.spinee.2016.04.013
doi: 10.1016/j.spinee.2016.04.013
pubmed: 27109831
Shimizu EN, Seifert JL, Johnson KJ, Romero-Ortega MI (2018) Prophylactic riluzole attenuates oxidative stress damage in spinal cord distraction. J Neurotrauma 35(12):1319–1328. https://doi.org/10.1089/neu.2017.5494
doi: 10.1089/neu.2017.5494
pubmed: 29295647
Caglar YS, Demirel A, Dogan I, Huseynov R, Eroglu U, Ozgural O, Al-Beyati ES (2018) Effect of riluzole on spinal cord regeneration with hemisection method before injury. World Neurosurg. https://doi.org/10.1016/j.wneu.2018.02.171
doi: 10.1016/j.wneu.2018.02.171
pubmed: 29906582
Nakamura M, Cho J-H, Shin H, Jang I-S (2019) Effects of cenobamate (YKP3089), a newly developed anti-epileptic drug, on voltage-gated sodium channels in rat hippocampal CA3 neurons. Eur J Pharmacol 855:175–182. https://doi.org/10.1016/j.ejphar.2019.05.007
doi: 10.1016/j.ejphar.2019.05.007
pubmed: 31063770
Çiçek S (2018) Structure-dependent activity of natural GABA(A) receptor modulators. Molecules 23(7):1512. https://doi.org/10.3390/molecules23071512
doi: 10.3390/molecules23071512
pmcid: 6100244
Sharma R, Song WS, Nakamura M, Neupane C, Shin H, Melnick SM, Glenn KJ, Jang I-S, Kim M-H, Park JB (2019) Effects of cenobamate on GABA-A receptor modulation (P1.5-033). Neurology 92(15 Supplement):P1.5-03
Feng H-J (2010) Allosteric modulation of αβδ GABAA receptors. Pharmaceuticals 3(11):3461–3477. https://doi.org/10.3390/ph3113461
doi: 10.3390/ph3113461
pmcid: 4034076
Shen M, Wang S, Wen X, Han XR, Wang YJ, Zhou XM, Zhang MH, Wu DM, Lu J, Zheng YL (2017) Dexmedetomidine exerts neuroprotective effect via the activation of the PI3K/Akt/mTOR signaling pathway in rats with traumatic brain injury. Biomed Pharmacother 95:885–893. https://doi.org/10.1016/j.biopha.2017.08.125
doi: 10.1016/j.biopha.2017.08.125
pubmed: 28903184
Li X, Wu C, Chen N, Gu H, Yen A, Cao L, Wang L (2016) PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma. Oncotarget. https://doi.org/10.18632/oncotarget.7961
doi: 10.18632/oncotarget.7961
pubmed: 29137357
pmcid: 5355253
Rai SN, Dilnashin H, Birla H, Singh SS, Zahra W, Rathore AS, Singh SP (2019) The role of PI3K/Akt and ERK in neurodegenerative disorders. Neurotox Res 35(3):775–795. https://doi.org/10.1007/s12640-019-0003-y
doi: 10.1007/s12640-019-0003-y
pubmed: 30707354
Peng M, Ling X, Song R, Gao X, Liang Z, Fang F, Cang J (2019) Upregulation of GLT-1 via PI3K/Akt pathway contributes to neuroprotection induced by dexmedetomidine. Front Neurol 10:1041. https://doi.org/10.3389/fneur.2019.01041
doi: 10.3389/fneur.2019.01041
pubmed: 31611842
pmcid: 6776610
Xilouri M, Papazafiri P (2008) Induction of Akt by endogenous neurosteroids and calcium sequestration in P19 derived neurons. Neurotox Res 13(3–4):209–219. https://doi.org/10.1007/bf03033504
doi: 10.1007/bf03033504
pubmed: 18522900
Jang I-S, Nakamura M, Ito Y, Akaike N (2006) Presynaptic GABAA receptors facilitate spontaneous glutamate release from presynaptic terminals on mechanically dissociated rat CA3 pyramidal neurons. Neuroscience 138(1):25–35. https://doi.org/10.1016/j.neuroscience.2005.11.001
doi: 10.1016/j.neuroscience.2005.11.001
pubmed: 16378694
Tang BL (2020) The expanding therapeutic potential of neuronal KCC2. Cells 9(1):240. https://doi.org/10.3390/cells9010240
doi: 10.3390/cells9010240
pmcid: 7016893
Lee S-S, Kim C-J, Shin M-S, Lim B-V (2020) Treadmill exercise ameliorates memory impairment through ERK-Akt-CREB-BDNF signaling pathway in cerebral ischemia gerbils. J Exerc Rehabil 16(1):49–57. https://doi.org/10.12965/jer.2040014.007
doi: 10.12965/jer.2040014.007
pubmed: 32161734
pmcid: 7056476
Buckley CT, Waters OR, DeMaagd G (2020) Cenobamate: a new adjunctive agent for drug-resistant focal onset epilepsy. Ann Pharmacother. https://doi.org/10.1177/1060028020941113
doi: 10.1177/1060028020941113
pubmed: 32623899
Perucca P, Gilliam FG (2012) Adverse effects of antiepileptic drugs. Lancet Neurol 11(9):792–802. https://doi.org/10.1016/s1474-4422(12)70153-9 . Erratum in: Lancet Neurol. 2012 Sep;11(9):746
Vernillet L, Greene SA, Kim HW, Melnick SM, Glenn K (2020) Mass balance, metabolism, and excretion of cenobamate, a new antiepileptic drug, after a single oral administration in healthy male subjects. Eur J Drug Metab Pharmacokinet 45(4):513–522. https://doi.org/10.1007/s13318-020-00615-7
doi: 10.1007/s13318-020-00615-7
pubmed: 32301064
Meininger V, Lacomblez L, Salachas F (2000) What has changed with riluzole? J Neurol 247(Suppl 6):VI/19-22. https://doi.org/10.1007/pl00007784
doi: 10.1007/pl00007784
pubmed: 19714404
Sámano C, Nistri A (2017) Mechanism of neuroprotection against experimental spinal cord injury by riluzole or methylprednisolone. Neurochem Res. https://doi.org/10.1007/s11064-017-2459-6
doi: 10.1007/s11064-017-2459-6
pubmed: 29290040