Nanodiamond Relaxometry-Based Detection of Free-Radical Species When Produced in Chemical Reactions in Biologically Relevant Conditions.
ODMR
biochemical analysis
hydroxyl radical
magnetometry
nitrogen vacancy center
relaxometry
Journal
ACS sensors
ISSN: 2379-3694
Titre abrégé: ACS Sens
Pays: United States
ID NLM: 101669031
Informations de publication
Date de publication:
24 12 2020
24 12 2020
Historique:
pubmed:
4
12
2020
medline:
15
5
2021
entrez:
3
12
2020
Statut:
ppublish
Résumé
Diamond magnetometry is a quantum sensing method involving detection of magnetic resonances with nanoscale resolution. For instance, T1 relaxation measurements, inspired by equivalent concepts in magnetic resonance imaging (MRI), provide a signal that is equivalent to T1 in conventional MRI but in a nanoscale environment. We use nanodiamonds (between 40 and 120 nm) containing ensembles of specific defects called nitrogen vacancy (NV) centers. To perform a T1 relaxation measurement, we pump the NV center in the ground state (using a laser at 532 nm) and observe how long the NV center can remain in this state. Here, we use this method to provide real-time measurements of free radicals when they are generated in a chemical reaction. Specifically, we focus on the photolysis of H
Identifiants
pubmed: 33269596
doi: 10.1021/acssensors.0c01037
pmc: PMC8651177
doi:
Substances chimiques
Nanodiamonds
0
Diamond
7782-40-3
Gadolinium
AU0V1LM3JT
Hydrogen Peroxide
BBX060AN9V
Nitrogen
N762921K75
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3862-3869Références
Nat Commun. 2018 Jun 19;9(1):2406
pubmed: 29921836
Sci Rep. 2017 Apr 7;7(1):720
pubmed: 28389652
Small. 2018 Jun;14(24):e1704263
pubmed: 29573338
Nat Commun. 2017 Jul 03;8:15950
pubmed: 28671183
Front Immunol. 2019 May 29;10:1216
pubmed: 31191556
Clin Interv Aging. 2007;2(2):219-36
pubmed: 18044138
Nat Nanotechnol. 2016 Aug;11(8):700-5
pubmed: 27136130
Photochem Photobiol. 2000 Mar;71(3):307-13
pubmed: 10732448
Annu Rev Phys Chem. 2014;65:83-105
pubmed: 24274702
Small. 2018 May;14(19):e1703838
pubmed: 29424097
J Neurochem. 2008 May;105(3):738-49
pubmed: 18194218
Phys Rev Lett. 2015 Aug 21;115(8):087602
pubmed: 26340208
Neurosci Res. 2005 Nov;53(3):304-13
pubmed: 16168507
Nano Lett. 2013 Jul 10;13(7):3305-9
pubmed: 23738579
Mutat Res. 2003 Oct 29;531(1-2):81-92
pubmed: 14637247
Small. 2019 Nov;15(48):e1901551
pubmed: 31207085
Science. 2016 Feb 19;351(6275):836-41
pubmed: 26847544
Science. 2013 Feb 1;339(6119):557-60
pubmed: 23372008
Chem Soc Rev. 2011 Sep;40(9):4783-804
pubmed: 21629957
Nanoscale. 2016 Jun 2;8(22):11588-94
pubmed: 27216436
Nat Commun. 2018 Nov 8;9(1):4678
pubmed: 30410050
Nano Lett. 2014 Nov 12;14(11):6443-8
pubmed: 25333198
Nat Nanotechnol. 2015 Feb;10(2):129-34
pubmed: 25559712
Chem Biol Interact. 2006 Mar 10;160(1):1-40
pubmed: 16430879
Free Radic Biol Med. 1993 Oct;15(4):447-51
pubmed: 8225026
Mikrochim Acta. 2017;184(4):1001-1009
pubmed: 28344361
Nanomaterials (Basel). 2020 Mar 12;10(3):
pubmed: 32178407
Nat Commun. 2013;4:2279
pubmed: 23900221
Nat Commun. 2013;4:1607
pubmed: 23511472
Rep Prog Phys. 2014 May;77(5):056503
pubmed: 24801494
Nat Commun. 2017 Sep 6;8(1):458
pubmed: 28878240
Science. 1995 Oct 13;270(5234):296-9
pubmed: 7569979
Magn Reson Med. 2016 Jun;75(6):2265-77
pubmed: 26190230
Proc Natl Acad Sci U S A. 2013 Jul 2;110(27):10894-8
pubmed: 23776230
Nano Lett. 2016 Jan 13;16(1):326-33
pubmed: 26709529