Sustainable production of the drug precursor tyramine by engineered Corynebacterium glutamicum.
Corynebacterium glutamicum
Aromatic amino acid decarboxylase
Pharmaceutical drug precursor
Plant alkaloids
Sustainable amine production
Tyramine
Journal
Applied microbiology and biotechnology
ISSN: 1432-0614
Titre abrégé: Appl Microbiol Biotechnol
Pays: Germany
ID NLM: 8406612
Informations de publication
Date de publication:
30 Oct 2024
30 Oct 2024
Historique:
received:
23
07
2024
accepted:
27
09
2024
revised:
20
09
2024
medline:
31
10
2024
pubmed:
30
10
2024
entrez:
30
10
2024
Statut:
epublish
Résumé
Tyramine has attracted considerable interest due to recent findings that it is an excellent starting material for the production of high-performance thermoplastics and hydrogels. Furthermore, tyramine is a precursor of a diversity of pharmaceutically relevant compounds, contributing to its growing importance. Given the limitations of chemical synthesis, including lack of selectivity and laborious processes with harsh conditions, the biosynthesis of tyramine by decarboxylation of L-tyrosine represents a promising sustainable alternative. In this study, the de novo production of tyramine from simple nitrogen and sustainable carbon sources was successfully established by metabolic engineering of the L-tyrosine overproducing Corynebacterium glutamicum strain AROM3. A phylogenetic analysis of aromatic-L-amino acid decarboxylases (AADCs) revealed potential candidate enzymes for the decarboxylation of tyramine. The heterologous overexpression of the respective AADC genes resulted in successful tyramine production, with the highest tyramine titer of 1.9 g L
Identifiants
pubmed: 39476177
doi: 10.1007/s00253-024-13319-8
pii: 10.1007/s00253-024-13319-8
doi:
Substances chimiques
Tyramine
X8ZC7V0OX3
Tyrosine
42HK56048U
Xylose
A1TA934AKO
Tyrosine Decarboxylase
EC 4.1.1.25
Carbon
7440-44-0
Nitrogen
N762921K75
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
499Subventions
Organisme : German Research Foundation (DFG)
ID : open access publication support
Organisme : Universität Bielefeld
ID : open access publication support
Informations de copyright
© 2024. The Author(s).
Références
Aboagye D, Banadda N, Kiggundu N, Kabenge I (2017) Assessment of orange peel waste availability in Ghana and potential bio-oil yield using fast pyrolysis. Renew Sustain Energy Rev 70:814–821. https://doi.org/10.1016/j.rser.2016.11.262
doi: 10.1016/j.rser.2016.11.262
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. https://doi.org/10.1093/nar/25.17.3389
doi: 10.1093/nar/25.17.3389
pubmed: 9254694
pmcid: 146917
Aristidou A, Penttilä M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11:187–198. https://doi.org/10.1016/S0958-1669(00)00085-9
doi: 10.1016/S0958-1669(00)00085-9
pubmed: 10753763
Balbino S, Dorić M, Vidaković S, Kraljić K, Škevin D, Drakula S, Voučko B, Čukelj N, Obranović M, Ćurić D (2019) Application of cryogenic grinding pretreatment to enhance extractability of bioactive molecules from pumpkin seed cake. J Food Process Eng 42:e13300. https://doi.org/10.1111/jfpe.13300
doi: 10.1111/jfpe.13300
Bampidis V, Azimonti G, de Lourdes BM, Christensen H, Dusemund B, Kouba M, Kos Durjava M, López-Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Sanz Y, Villa RE, Woutersen R, Costa L, Dierick N, Flachowsky G, Glandorf B, Mantovani A, Wallace RJ, Anguita M, Manini P, Tarrés-Call J, Ramos F (2019) Safety and efficacy of L-tryptophan produced by fermentation with Corynebacterium glutamicum KCCM 80176 for all animal species. EFSA J 17:e05729. https://doi.org/10.2903/j.efsa.2019.5729
doi: 10.2903/j.efsa.2019.5729
pubmed: 32626351
pmcid: 7009113
Bearson S, Bearson B, Foster JW (1997) Acid stress responses in enterobacteria. FEMS Microbiol Lett 147:173–180. https://doi.org/10.1111/j.1574-6968.1997.tb10238.x
doi: 10.1111/j.1574-6968.1997.tb10238.x
pubmed: 9119190
Bertani G (1951) Studies on lysogenesis I: the mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300. https://doi.org/10.1128/jb.62.3.293-300.1951
doi: 10.1128/jb.62.3.293-300.1951
pubmed: 14888646
pmcid: 386127
Blombach B, Seibold GM (2010) Carbohydrate metabolism in Corynebacterium glutamicum and applications for the metabolic engineering of L-lysine production strains. Appl Microbiol Biotechnol 86:1313–1322. https://doi.org/10.1007/s00253-010-2537-z
doi: 10.1007/s00253-010-2537-z
pubmed: 20333512
Chávez-Béjar MI, Báez-Viveros JL, Martínez A, Bolívar F, Gosset G (2012) Biotechnological production of L-tyrosine and derived compounds. Process Biochem 47:1017–1026. https://doi.org/10.1016/j.procbio.2012.04.005
doi: 10.1016/j.procbio.2012.04.005
Chen M, He X, Lv J, Xiao H, Tan W, Wang Y, Hu J, Zeng K, Yang G (2023) A new bio-based thermosetting with amorphous state, sub-zero softening point and high curing efficiency. Polymer 264:125518. https://doi.org/10.1016/j.polymer.2022.125518
doi: 10.1016/j.polymer.2022.125518
Chenprakhon P, Dhammaraj T, Chantiwas R, Chaiyen P (2017) Hydroxylation of 4-hydroxyphenylethylamine derivatives by R263 variants of the oxygenase component of p-hydroxyphenylacetate-3-hydroxylase. Arch Biochem Biophys 620:1–11. https://doi.org/10.1016/j.abb.2017.03.004
doi: 10.1016/j.abb.2017.03.004
pubmed: 28300536
Choi Y, Han S-W, Kim J-S, Jang Y, Shin J-S (2021) Biochemical characterization and synthetic application of aromatic L-amino acid decarboxylase from Bacillus atrophaeus. Appl Microbiol Biotechnol 105:2775–2785. https://doi.org/10.1007/s00253-021-11122-3
doi: 10.1007/s00253-021-11122-3
pubmed: 33713143
Driche EH, Badji B, Bijani C, Belghit S, Pont F, Mathieu F, Zitouni A (2022) A new Saharan strain of Streptomyces sp. GSB-11 produces maculosin and N-acetyltyramine active against multidrug-resistant pathogenic bacteria. Curr Microbiol 79:298. https://doi.org/10.1007/s00284-022-02994-3
doi: 10.1007/s00284-022-02994-3
pubmed: 36002540
Eggeling L, Bott M (2005) Handbook of Corynebacterium glutamicum. CRC Press, Bosa Roca
doi: 10.1201/9781420039696
Fazel AM, Jensen RA (1979) Obligatory biosynthesis of L-tyrosine via the pretyrosine branchlet in coryneform bacteria. J Bacteriol 138:805–815. https://doi.org/10.1128/jb.138.3.805-815.1979
doi: 10.1128/jb.138.3.805-815.1979
pubmed: 457594
pmcid: 218108
Gelfand DH, Steinberg RA (1977) Escherichia coli mutants deficient in the aspartate and aromatic amino acid aminotransferases. J Bacteriol 130:429–440. https://doi.org/10.1128/jb.130.1.429-440.1977
doi: 10.1128/jb.130.1.429-440.1977
pubmed: 15983
pmcid: 235221
Gerstmeir R, Wendisch VF, Schnicke S, Ruan H, Farwick M, Reinscheid D, Eikmanns BJ (2003) Acetate metabolism and its regulation in Corynebacterium glutamicum. J Biotechnol 104:99–122. https://doi.org/10.1016/S0168-1656(03)00167-6
doi: 10.1016/S0168-1656(03)00167-6
pubmed: 12948633
Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345. https://doi.org/10.1038/nmeth.1318
doi: 10.1038/nmeth.1318
pubmed: 19363495
Giovannini L, Migliori M, Filippi C, Origlia N, Panichi V, Falchi M, Bertelli AAE, Bertelli A (2002) Inhibitory activity of the white wine compounds, tyrosol and caffeic acid, on lipopolysaccharide-induced tumor necrosis factor-alpha release in human peripheral blood mononuclear cells. Int J Tissue React 24:53–56
pubmed: 12182233
Gopinath V, Meiswinkel TM, Wendisch VF, Nampoothiri KM (2011) Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum. Appl Microbiol Biotechnol 92:985–996. https://doi.org/10.1007/s00253-011-3478-x
doi: 10.1007/s00253-011-3478-x
pubmed: 21796382
Hagino H, Nakayama K (1974a) DAHP Synthetase and its control in Corynebacterium glutamicum. Agric Biol Chem 38:2125–2134. https://doi.org/10.1080/00021369.1974.10861482
doi: 10.1080/00021369.1974.10861482
Hagino H, Nakayama K (1974b) Regulatory properties of prephenate dehydrogenase and prephenate dehydratase from Corynebacterium glutamicum. Agric Biol Chem 38:2367–2376. https://doi.org/10.1080/00021369.1974.10861536
doi: 10.1080/00021369.1974.10861536
Hagino H, Nakayama K (1975) Regulatory properties of chorismate mutase from Corynebacterium glutamicum. Agric Biol Chem 39:331–342. https://doi.org/10.1080/00021369.1975.10861620
doi: 10.1080/00021369.1975.10861620
Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580. https://doi.org/10.1016/S0022-2836(83)80284-8
doi: 10.1016/S0022-2836(83)80284-8
pubmed: 6345791
Haupka C (2020) chaupka/codon_harmonization: release v1.2.0. https://doi.org/10.5281/ZENODO.4062177
Hegedűs L, Máthé T (2005) Selective heterogeneous catalytic hydrogenation of nitriles to primary amines in liquid phase: Part I. Hydrogenation of benzonitrile over palladium. Appl Catal Gen 296:209–215. https://doi.org/10.1016/j.apcata.2005.08.024
doi: 10.1016/j.apcata.2005.08.024
Ippolito RM, Vigmond S (1988) Process for preparing substituted phenol ethers via oxazolidine-structure intermediates. US Patent No. 4,760,182. U.S. Patent and Trademark Office, Washington, DC
Irla M, Nærdal I, Brautaset T, Wendisch VF (2017) Methanol-based γ-aminobutyric acid (GABA) production by genetically engineered Bacillus methanolicus strains. Ind Crops Prod 106:12–20. https://doi.org/10.1016/j.indcrop.2016.11.050
doi: 10.1016/j.indcrop.2016.11.050
Jones BN, Gilligan JP (1983) o-Phthaldialdehyde precolumn derivatization and reversed-phase high-performance liquid chromatography of polypeptide hydrolysates and physiological fluids. J Chromatogr A 266:471–482. https://doi.org/10.1016/S0021-9673(01)90918-5
doi: 10.1016/S0021-9673(01)90918-5
Junker N, Sariyar Akbulut B, Wendisch VF (2024) Utilization of orange peel waste for sustainable amino acid production by Corynebacterium glutamicum. Front Bioeng Biotechnol 12:1419444. https://doi.org/10.3389/fbioe.2024.1419444
doi: 10.3389/fbioe.2024.1419444
pubmed: 39050686
pmcid: 11266056
Kawaguchi H, Sasaki M, Vertès AA, Inui M, Yukawa H (2008) Engineering of an L-arabinose metabolic pathway in Corynebacterium glutamicum. Appl Microbiol Biotechnol 77:1053–1062. https://doi.org/10.1007/s00253-007-1244-x
doi: 10.1007/s00253-007-1244-x
pubmed: 17965859
Kerbs A, Mindt M, Schwardmann L, Wendisch VF (2021) Sustainable production of N-methylphenylalanine by reductive methylamination of phenylpyruvate using engineered Corynebacterium glutamicum. Microorganisms 9:824. https://doi.org/10.3390/microorganisms9040824
doi: 10.3390/microorganisms9040824
pubmed: 33924554
pmcid: 8070496
Kerbs A, Burgardt A, Veldmann KH, Schäffer T, Lee J-H, Wendisch VF (2022) Fermentative production of halogenated tryptophan derivatives with Corynebacterium glutamicum overexpressing tryptophanase or decarboxylase genes. ChemBioChem 23:e202200007. https://doi.org/10.1002/cbic.202200007
doi: 10.1002/cbic.202200007
pubmed: 35224830
pmcid: 9315010
Kezmarsky ND, Xu H, Graham DE, White RH (2005) Identification and characterization of a L-tyrosine decarboxylase in Methanocaldococcus jannaschii. Biochim Biophys Acta (BBA) - Gen Subj 1722:175–182. https://doi.org/10.1016/j.bbagen.2004.12.003
doi: 10.1016/j.bbagen.2004.12.003
Kikuchi Y, Tsujimoto K, Kurahashi O (1997) Mutational analysis of the feedback sites of phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase of Escherichia coli. Appl Environ Microbiol 63:761–762. https://doi.org/10.1128/aem.63.2.761-762.1997
doi: 10.1128/aem.63.2.761-762.1997
pubmed: 9023954
pmcid: 168366
Kim B, Binkley R, Kim HU, Lee SY (2018) Metabolic engineering of Escherichia coli for the enhanced production of L-tyrosine. Biotechnol Bioeng 115:2554–2564. https://doi.org/10.1002/bit.26797
doi: 10.1002/bit.26797
pubmed: 30019750
Kirchner O, Tauch A (2003) Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum. J Biotechnol 104:287–299. https://doi.org/10.1016/S0168-1656(03)00148-2
doi: 10.1016/S0168-1656(03)00148-2
pubmed: 12948646
Koch GL, Shaw DC, Gibson F (1971) The purification and characterisation of chorismate mutase-prephenate dehydrogenase from Escherichia coli K12. Biochim Biophys Acta (BBA) – Protein Structure 229:795–804. https://doi.org/10.1016/0005-2795(71)90298-4
doi: 10.1016/0005-2795(71)90298-4
Kurpejović E, Burgardt A, Bastem GM, Junker N, Wendisch VF, Sariyar Akbulut B (2023) Metabolic engineering of Corynebacterium glutamicum for L-tyrosine production from glucose and xylose. J Biotechnol 363:8–16. https://doi.org/10.1016/j.jbiotec.2022.12.005
doi: 10.1016/j.jbiotec.2022.12.005
pubmed: 36566842
Lee H, Rho J, Messersmith PB (2009) Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Adv Mater 21:431–434. https://doi.org/10.1002/adma.200801222
doi: 10.1002/adma.200801222
pubmed: 19802352
pmcid: 2755254
Lee W, Kim M-A, Park I, Hwang JS, Na M, Bae J-S (2017) Novel direct factor Xa inhibitory compounds from Tenebrio molitor with anti-platelet aggregation activity. Food Chem Toxicol 109:19–27. https://doi.org/10.1016/j.fct.2017.08.026
doi: 10.1016/j.fct.2017.08.026
pubmed: 28844963
Letunic I, Bork P (2021) Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49:W293–W296. https://doi.org/10.1093/nar/gkab301
doi: 10.1093/nar/gkab301
pubmed: 33885785
pmcid: 8265157
Leuschner RG, Heidel M, Hammes WP (1998) Histamine and tyramine degradation by food fermenting microorganisms. Int J Food Microbiol 39:1–10. https://doi.org/10.1016/S0168-1605(97)00109-8
doi: 10.1016/S0168-1605(97)00109-8
pubmed: 9562873
Li T, Huo L, Pulley C, Liu A (2012) Decarboxylation mechanisms in biological system. Bioorganic Chem 43:2–14. https://doi.org/10.1016/j.bioorg.2012.03.001
doi: 10.1016/j.bioorg.2012.03.001
Lin B, Tao Y (2017) Whole-cell biocatalysts by design. Microb Cell Factories 16:106. https://doi.org/10.1186/s12934-017-0724-7
doi: 10.1186/s12934-017-0724-7
Liu Fang, Xu Wenjuan, Du Lihui, Wang Daoying, Zhu Yongzhi, Geng Zhiming, Zhang Muhan, Xu Weimin (2014) Heterologous Expression and Characterization of Tyrosine Decarboxylase from Enterococcus faecalis R612Z1 and Enterococcus faecium R615Z1. J Food Prot 77(4):592–598. https://doi.org/10.4315/0362-028X.JFP-13-326
doi: 10.4315/0362-028X.JFP-13-326
pubmed: 24680070
Lütke-Eversloh T, Stephanopoulos G (2005) Feedback inhibition of chorismate mutase/prephenate dehydrogenase (TyrA) of Escherichia coli: generation and characterization of tyrosine-Insensitive Mutants. Appl Environ Microbiol 71:7224–7228. https://doi.org/10.1128/AEM.71.11.7224-7228.2005
doi: 10.1128/AEM.71.11.7224-7228.2005
pubmed: 16269762
pmcid: 1287721
McAllister MI, Boulho C, McMillan L, Gilpin LF, Wiedbrauk S, Brennan C, Lennon D (2018) The production of tyramine via the selective hydrogenation of 4-hydroxybenzyl cyanide over a carbon-supported palladium catalyst. RSC Adv 8:29392–29399. https://doi.org/10.1039/C8RA05654D
doi: 10.1039/C8RA05654D
pubmed: 35548000
pmcid: 9084560
McCloskey BD, Park HB, Ju H, Rowe BW, Miller DJ, Chun BJ, Kin K, Freeman BD (2010) Influence of polydopamine deposition conditions on pure water flux and foulant adhesion resistance of reverse osmosis, ultrafiltration, and microfiltration membranes. Polymer 51:3472–3485. https://doi.org/10.1016/j.polymer.2010.05.008
doi: 10.1016/j.polymer.2010.05.008
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF (2013) Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine. Microb Biotechnol 6:131–140. https://doi.org/10.1111/1751-7915.12001
doi: 10.1111/1751-7915.12001
pubmed: 23164409
Mindt M, Beyraghdar Kashkooli A, Suarez-Diez M, Ferrer L, Jilg T, Bosch D, Martins dos Santos V, Wendisch VF, Cankar K (2022) Production of indole by Corynebacterium glutamicum microbial cell factories for flavor and fragrance applications. Microb Cell Factories 21:45. https://doi.org/10.1186/s12934-022-01771-y
doi: 10.1186/s12934-022-01771-y
Moreno-Arribas V, Lonvaud-Funel A (2001) Purification and characterization of tyrosine decarboxylase of Lactobacillus brevis IOEB 9809 isolated from wine. FEMS Microbiol Lett 195:103–107. https://doi.org/10.1111/j.1574-6968.2001.tb10505.x
doi: 10.1111/j.1574-6968.2001.tb10505.x
pubmed: 11167003
Neshat A, Mentz A, Rückert C, Kalinowski J (2014) Transcriptome sequencing revealed the transcriptional organization at ribosome-mediated attenuation sites in Corynebacterium glutamicum and identified a novel attenuator involved in aromatic amino acid biosynthesis. J Biotechnol 190:55–63. https://doi.org/10.1016/j.jbiotec.2014.05.033
doi: 10.1016/j.jbiotec.2014.05.033
pubmed: 24910972
Okai N, Miyoshi T, Takeshima Y, Kuwahara H, Ogino C, Kondo A (2016) Production of protocatechuic acid by Corynebacterium glutamicum expressing chorismate-pyruvate lyase from Escherichia coli. Appl Microbiol Biotechnol 100:135–145. https://doi.org/10.1007/s00253-015-6976-4
doi: 10.1007/s00253-015-6976-4
pubmed: 26392137
Pan H, Li H, Wu S, Lai C, Guo D (2023) De novo biosynthesis of N-acetyltyramine in engineered Escherichia coli. Enzyme Microb Technol 162:110149. https://doi.org/10.1016/j.enzmictec.2022.110149
doi: 10.1016/j.enzmictec.2022.110149
pubmed: 36341950
Pérez-García F, Wendisch VF (2018) Transport and metabolic engineering of the cell factory Corynebacterium glutamicum. FEMS Microbiol Lett 365:fny166. https://doi.org/10.1093/femsle/fny166
doi: 10.1093/femsle/fny166
Prandi B, Faccini A, Lambertini F, Bencivenni M, Jorba M, Van Droogenbroek B, Bruggeman G, Schöber J, Petrusan J, Elst K, Sforza S (2019) Food wastes from agrifood industry as possible sources of proteins: a detailed molecular view on the composition of the nitrogen fraction, amino acid profile and racemisation degree of 39 food waste streams. Food Chem 286:567–575. https://doi.org/10.1016/j.foodchem.2019.01.166
doi: 10.1016/j.foodchem.2019.01.166
pubmed: 30827648
Reis AC, Salis HM (2020) An automated model test system for systematic development and improvement of gene expression models. ACS Synth Biol 9:3145–3156. https://doi.org/10.1021/acssynbio.0c00394
doi: 10.1021/acssynbio.0c00394
pubmed: 33054181
Rittmann D, Lindner SN, Wendisch VF (2008) Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Appl Environ Microbiol 74:6216–6222. https://doi.org/10.1128/AEM.00963-08
doi: 10.1128/AEM.00963-08
pubmed: 18757581
pmcid: 2570274
Sambrook J, Russel D (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York
Satoh Y, Tajima K, Munekata M, Keasling JD, Lee TS (2012) Engineering of a tyrosol-producing pathway, utilizing simple sugar and the central metabolic tyrosine, in Escherichia coli. J Agric Food Chem 60:979–984. https://doi.org/10.1021/jf203256f
doi: 10.1021/jf203256f
pubmed: 22225426
Schneider J, Niermann K, Wendisch VF (2011) Production of the amino acids L-glutamate, L-lysine, L-ornithine and L-arginine from arabinose by recombinant Corynebacterium glutamicum. J Biotechnol 154:191–198. https://doi.org/10.1016/j.jbiotec.2010.07.009
doi: 10.1016/j.jbiotec.2010.07.009
pubmed: 20638422
Scholz SA, Graves I, Minty JJ, Lin XN (2018) Production of cellulosic organic acids via synthetic fungal consortia. Biotechnol Bioeng 115:1096–1100. https://doi.org/10.1002/bit.26509
doi: 10.1002/bit.26509
pubmed: 29205274
Schulz A, Gepp MM, Stracke F, von Briesen H, Neubauer JC, Zimmermann H (2019) Tyramine-conjugated alginate hydrogels as a platform for bioactive scaffolds. J Biomed Mater Res A 107:114–121. https://doi.org/10.1002/jbm.a.36538
doi: 10.1002/jbm.a.36538
pubmed: 30256518
Sgobba E, Wendisch VF (2020) Synthetic microbial consortia for small molecule production. Curr Opin Biotechnol 62:72–79. https://doi.org/10.1016/j.copbio.2019.09.011
doi: 10.1016/j.copbio.2019.09.011
pubmed: 31627138
Sgobba E, Stumpf AK, Vortmann M, Jagmann N, Krehenbrink M, Dirks-Hofmeister ME, Moerschbacher B, Philipp B, Wendisch VF (2018) Synthetic Escherichia coli-Corynebacterium glutamicum consortia for L-lysine production from starch and sucrose. Bioresour Technol 260:302–310. https://doi.org/10.1016/j.biortech.2018.03.113
doi: 10.1016/j.biortech.2018.03.113
pubmed: 29631180
Sheldon RA, Woodley JM (2018) Role of biocatalysis in sustainable chemistry. Chem Rev 118:801–838. https://doi.org/10.1021/acs.chemrev.7b00203
doi: 10.1021/acs.chemrev.7b00203
pubmed: 28876904
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. https://doi.org/10.1038/msb.2011.75
doi: 10.1038/msb.2011.75
pubmed: 21988835
pmcid: 3261699
Sikder J, Roy M, Dey P, Pal P (2012) Techno-economic analysis of a membrane-integrated bioreactor system for production of lactic acid from sugarcane juice. Biochem Eng J 63:81–87. https://doi.org/10.1016/j.bej.2011.11.004
doi: 10.1016/j.bej.2011.11.004
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen J-L, Wendisch VF (2005) Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Appl Environ Microbiol 71:5920–5928. https://doi.org/10.1128/AEM.71.10.5920-5928.2005
doi: 10.1128/AEM.71.10.5920-5928.2005
pubmed: 16204505
pmcid: 1265975
Suplatov D, Voevodin V, Švedas V (2015) Robust enzyme design: bioinformatic tools for improved protein stability. Biotechnol J 10:344–355. https://doi.org/10.1002/biot.201400150
doi: 10.1002/biot.201400150
pubmed: 25524647
The UniProt Consortium (2021) UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 49:D480–D489. https://doi.org/10.1093/nar/gkaa1100
doi: 10.1093/nar/gkaa1100
Thiago RDSM, Pedro PMDM, Eliana FCS (2014) Solid wastes in brewing process: a review. J Brew Distill 5:1–9. https://doi.org/10.5897/JBD2014.0043
doi: 10.5897/JBD2014.0043
Torrens-Spence MP, Pluskal T, Li F-S, Carballo V, Weng J-K (2018) Complete pathway elucidation and heterologous reconstitution of Rhodiola salidroside biosynthesis. Mol Plant 11:205–217. https://doi.org/10.1016/j.molp.2017.12.007
doi: 10.1016/j.molp.2017.12.007
pubmed: 29277428
Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 44:W232–W235. https://doi.org/10.1093/nar/gkw256
doi: 10.1093/nar/gkw256
pubmed: 27084950
pmcid: 4987875
Tsoi R, Wu F, Zhang C, Bewick S, Karig D, You L (2018) Metabolic division of labor in microbial systems. Proc Natl Acad Sci USA 115:2526–2531. https://doi.org/10.1073/pnas.1716888115
doi: 10.1073/pnas.1716888115
pubmed: 29463749
pmcid: 5877992
Veldmann KH, Dachwitz S, Risse JM, Lee J-H, Sewald N, Wendisch VF (2019) Bromination of L-tryptophan in a fermentative process with Corynebacterium glutamicum. Front Bioeng Biotechnol 291:7–16. https://doi.org/10.1016/j.jbiotec.2018.12.008
doi: 10.1016/j.jbiotec.2018.12.008
Viala JPM, Méresse S, Pocachard B, Guilhon A-A, Aussel L, Barras F (2011) Sensing and adaptation to low pH mediated by inducible amino acid decarboxylases in Salmonella. PLoS ONE 6:e22397. https://doi.org/10.1371/journal.pone.0022397
doi: 10.1371/journal.pone.0022397
pubmed: 21799843
pmcid: 3143133
Wang J, Lu X, Ying H, Ma W, Xu S, Wang X, Chen K, Ouyang P (2018) A novel process for cadaverine bio-production using a consortium of two engineered Escherichia coli. Front Microbiol 9:1312. https://doi.org/10.3389/fmicb.2018.01312
doi: 10.3389/fmicb.2018.01312
pubmed: 29971056
pmcid: 6018084
Wehrmann A, Morakkabati S, Krämer R, Sahm H, Eggeling L (1995) Functional analysis of sequences adjacent to dapE of Corynebacterium glutamicum reveals the presence of aroP, which encodes the aromatic amino acid transporter. J Bacteriol 177:5991–5993. https://doi.org/10.1128/jb.177.20.5991-5993.1995
doi: 10.1128/jb.177.20.5991-5993.1995
pubmed: 7592354
pmcid: 177429
Wendisch VF (2020) Metabolic engineering advances and prospects for amino acid production. Metab Eng 58:17–34. https://doi.org/10.1016/j.ymben.2019.03.008
doi: 10.1016/j.ymben.2019.03.008
pubmed: 30940506
Werner F, Schwardmann LS, Siebert D, Rückert-Reed C, Kalinowski J, Wirth M-T, Hofer K, Takors R, Wendisch VF, Blombach B (2023) Metabolic engineering of Corynebacterium glutamicum for fatty alcohol production from glucose and wheat straw hydrolysate. Biotechnol Biofuels 16:116. https://doi.org/10.1186/s13068-023-02367-3
doi: 10.1186/s13068-023-02367-3
Williams BB, Van Benschoten AH, Cimermancic P, Donia MS, Zimmermann M, Taketani M, Ishihara A, Kashyap PC, Fraser JS, Fischbach MA (2014) Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe 16:495–503. https://doi.org/10.1016/j.chom.2014.09.001
doi: 10.1016/j.chom.2014.09.001
pubmed: 25263219
pmcid: 4260654
Wohlgemuth R (2022) Selective biocatalytic defunctionalization of raw materials. Chemsuschem 15:e202200402. https://doi.org/10.1002/cssc.202200402
doi: 10.1002/cssc.202200402
pubmed: 35388636
Wolf S, Becker J, Tsuge Y, Kawaguchi H, Kondo A, Marienhagen J, Bott M, Wendisch VF, Wittmann C (2021) Advances in metabolic engineering of Corynebacterium glutamicum to produce high-value active ingredients for food, feed, human health, and well-being. Essays Biochem 65:197–212. https://doi.org/10.1042/EBC20200134
doi: 10.1042/EBC20200134
pubmed: 34096577
pmcid: 8313993
Yang T, Wu P, Zhang Y, Cao M, Yuan J (2022) High-titre production of aromatic amines in metabolically engineered Escherichia coli. J Appl Microbiol 133:2931–2940. https://doi.org/10.1111/jam.15745
doi: 10.1111/jam.15745
pubmed: 35938518
Yu H-S, Ma L-Q, Zhang J-X, Shi G-L, Hu Y-H, Wang Y-N (2011) Characterization of glycosyltransferases responsible for salidroside biosynthesis in Rhodiola sachalinensis. Phytochemistry 72:862–870. https://doi.org/10.1016/j.phytochem.2011.03.020
doi: 10.1016/j.phytochem.2011.03.020
pubmed: 21497865
Zhang K, Ni Y (2014) Tyrosine decarboxylase from Lactobacillus brevis: soluble expression and characterization. Protein Expr Purif 94:33–39. https://doi.org/10.1016/j.pep.2013.10.018
doi: 10.1016/j.pep.2013.10.018
pubmed: 24211777
Zhang C, Zhang J, Kang Z, Du G, Chen J (2015) Rational engineering of multiple module pathways for the production of L-phenylalanine in Corynebacterium glutamicum. J Ind Microbiol Biotechnol 42:787–797. https://doi.org/10.1007/s10295-015-1593-x
doi: 10.1007/s10295-015-1593-x
pubmed: 25665502
Zhou K, Qiao K, Edgar S, Stephanopoulos G (2015) Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat Biotechnol 33:377–383. https://doi.org/10.1038/nbt.3095
doi: 10.1038/nbt.3095
pubmed: 25558867
pmcid: 4867547
Zhu Y, Zhou C, Wang Y, Li C (2020) Transporter engineering for microbial manufacturing. Biotechnol J 15:1900494. https://doi.org/10.1002/biot.201900494
doi: 10.1002/biot.201900494