Effects of Sphingosine-1-Phosphate on Cell Viability, Differentiation, and Gene Expression of Adipocytes.
adipocyte differentiation
cell viability
gene expression
preadipocyte
sphingosine-1-phosphate
transcriptomics
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
05 Dec 2020
05 Dec 2020
Historique:
received:
29
10
2020
revised:
27
11
2020
accepted:
04
12
2020
entrez:
9
12
2020
pubmed:
10
12
2020
medline:
5
3
2021
Statut:
epublish
Résumé
Sphingosine-1-phosphate (S1P) is a highly potent sphingolipid metabolite, which controls numerous physiological and pathological process via its extracellular and intracellular functions. The breast is mainly composed of epithelial cells (mammary gland) and adipocytes (stroma). Adipocytes play an important role in regulating the normal functions of the breast. Compared to the vast amount studies on breast epithelial cells, the functions of S1P in breast adipocytes are much less known. Thus, in the current study, we used human preadipocyte cell lines SGBS and mouse preadipocyte cell line 3T3-L1 as in vitro models to evaluate the effects of S1P on cell viability, differentiation, and gene expression in adipocytes. Our results showed that S1P increased cell viability in SGBS and 3T3-L1 preadipocytes but moderately reduced cell viability in differentiated SGBS and 3T3-L1 adipocytes. S1P was also shown to inhibit adipogenic differentiation of SGBS and 3T3-L1 at concentration higher than 1000 nM. Transcriptome analyses showed that S1P was more influential on gene expression in differentiated adipocytes. Furthermore, our network analysis in mature adipocytes showed that the upregulated DEGs (differentially expressed genes) were related to regulation of lipolysis, PPAR (peroxisome proliferator-activated receptor) signaling, alcoholism, and toll-like receptor signaling, whereas the downregulated DEGs were overrepresented in cytokine-cytokine receptor interaction, focal adhesion, starch and sucrose metabolism, and nuclear receptors pathways. Together previous studies on the functions of S1P in breast epithelial cells, the current study implicated that S1P may play a critical role in modulating the bidirectional regulation of adipocyte-extracellular matrix-epithelial cell axis and maintaining the normal physiological functions of the breast.
Identifiants
pubmed: 33291440
pii: ijms21239284
doi: 10.3390/ijms21239284
pmc: PMC7730007
pii:
doi:
Substances chimiques
Biomarkers
0
Lysophospholipids
0
sphingosine 1-phosphate
26993-30-6
Sphingosine
NGZ37HRE42
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : University of Saskatchewan
ID : 419247
Organisme : Natural Sciences and Engineering Research Council of Canada
ID : 417652
Références
Annu Rev Immunol. 2020 Apr 26;38:759-784
pubmed: 32340572
Science. 2019 Oct 18;366(6463):
pubmed: 31624181
Mol Cancer Res. 2018 Oct;16(10):1543-1555
pubmed: 29903770
Adv Biol Regul. 2017 Jan;63:156-166
pubmed: 27720306
Nucleic Acids Res. 2009 Jan;37(Database issue):D623-8
pubmed: 18940869
Protein Sci. 2018 Jan;27(1):233-244
pubmed: 28940711
Mediators Inflamm. 2017;2017:2076239
pubmed: 28912626
Semin Cancer Biol. 2019 Dec;59:125-132
pubmed: 31323288
Nat Commun. 2018 Jun 26;9(1):2473
pubmed: 29946144
Mol Med Rep. 2015 Feb;11(2):1031-6
pubmed: 25351259
Dev Biol. 2010 Aug 15;344(2):968-78
pubmed: 20599899
J Microsc Ultrastruct. 2018 Jul-Sep;6(3):123-128
pubmed: 30221137
Adv Biol Regul. 2020 Jan;75:100670
pubmed: 31708456
Pharmacol Rev. 2008 Jun;60(2):181-95
pubmed: 18552276
Oncotarget. 2016 Dec 6;7(49):80579-80585
pubmed: 27811358
Crit Rev Biochem Mol Biol. 2017 Oct;52(5):543-553
pubmed: 28618839
Trends Cell Biol. 2012 Jan;22(1):50-60
pubmed: 22001186
Nat Commun. 2018 Sep 4;9(1):3592
pubmed: 30181538
PLoS One. 2015 May 07;10(5):e0126492
pubmed: 25951454
Invest Ophthalmol Vis Sci. 2016 Feb;57(2):301-11
pubmed: 26830367
Mol Cell Proteomics. 2012 Jan;11(1):M111.010504
pubmed: 21947364
Ann Oncol. 2019 Dec 1;30(Suppl_10):x12-x20
pubmed: 31859349
Am J Physiol Cell Physiol. 2004 May;286(5):C1159-69
pubmed: 15075215
J Lipid Res. 2020 Oct;61(10):1328-1340
pubmed: 32690594
BMC Bioinformatics. 2017 Mar 2;18(1):142
pubmed: 28249561
Genome Res. 2003 Nov;13(11):2498-504
pubmed: 14597658
Curr Opin Cell Biol. 1998 Oct;10(5):640-6
pubmed: 9818175
PLoS One. 2015 Dec 28;10(12):e0145850
pubmed: 26710334
Science. 2009 Sep 4;325(5945):1254-7
pubmed: 19729656
FASEB J. 2019 Jun;33(6):7180-7191
pubmed: 30844311
Exp Mol Med. 2012 Oct 31;44(10):603-14
pubmed: 22859500
J Med Food. 2011 Mar;14(3):201-8
pubmed: 21332398
Endocrinology. 2006 Dec;147(12):5835-44
pubmed: 16973728
Int J Mol Med. 2014 Oct;34(4):1153-8
pubmed: 25050633
J Mammary Gland Biol Neoplasia. 2016 Jun;21(1-2):9-17
pubmed: 27194029
J Biol Chem. 2003 Nov 21;278(47):46832-9
pubmed: 12954646
Cancer Res. 2007 Nov 1;67(21):10466-74
pubmed: 17974990
Oncotarget. 2016 Sep 27;7(39):62939-62953
pubmed: 27556857
Oncotarget. 2017 Aug 24;8(43):74947-74961
pubmed: 29088837
Endocrinology. 2016 May;157(5):1839-51
pubmed: 26943364
Nucleic Acids Res. 2018 Jan 4;46(D1):D661-D667
pubmed: 29136241
Prog Lipid Res. 2016 Apr;62:93-106
pubmed: 26970273
Mol Syst Biol. 2009;5:290
pubmed: 19638971
Nat Rev Cancer. 2020 Feb;20(2):74-88
pubmed: 31686003
J Mammary Gland Biol Neoplasia. 2010 Sep;15(3):279-90
pubmed: 20717712
Cells. 2020 Feb 27;9(3):
pubmed: 32120856
Am J Physiol Endocrinol Metab. 2014 Apr 1;306(7):E756-68
pubmed: 24473437