Epigenetic Silencing of Tumor Suppressor miR-124 Directly Supports STAT3 Activation in Cutaneous T-Cell Lymphoma.
Cell Line, Tumor
DNA Methylation
/ genetics
Epigenesis, Genetic
Gene Expression Regulation, Neoplastic
Gene Silencing
Genes, Tumor Suppressor
Humans
Janus Kinases
/ metabolism
Lymphoma, T-Cell, Cutaneous
/ genetics
MicroRNAs
/ genetics
Promoter Regions, Genetic
/ genetics
STAT3 Transcription Factor
/ metabolism
Skin Neoplasms
/ genetics
Transcription, Genetic
JAK/STAT (janus kinase/signal transducer and activator of transcription)
STAT3 (signal transducer and activator of transcription-3)
Sézary syndrome
cutaneous T-cell lymphoma
miR-124
mycosis fungoides
Journal
Cells
ISSN: 2073-4409
Titre abrégé: Cells
Pays: Switzerland
ID NLM: 101600052
Informations de publication
Date de publication:
15 12 2020
15 12 2020
Historique:
received:
03
11
2020
revised:
03
12
2020
accepted:
07
12
2020
entrez:
18
12
2020
pubmed:
19
12
2020
medline:
22
6
2021
Statut:
epublish
Résumé
Increasing evidence supports a potential role for STAT3 as a tumor driver in cutaneous T-cell lymphomas (CTCL). The mechanisms leading to STAT3 activation are not fully understood; however, we recently found that miR-124, a known STAT3 regulator, is robustly silenced in MF tumor-stage and CTCL cells. We studied here whether deregulation of miR-124 contributes to STAT3 pathway activation in CTCL. We measured the effect of ectopic mir-124 expression in active phosphorylated STAT3 (p-STAT3) levels and evaluated the transcriptional impact of miR-124-dependent STAT3 pathway regulation by expression microarray analysis. We found that ectopic expression of miR-124 results in massive downregulation of activated STAT3 in different CTCL lines, which resulted in a significant alteration of genetic signatures related with gene transcription and proliferation such as MYC and E2F. Our study highlights the importance of the miR-124/STAT3 axis in CTCL and demonstrates that the STAT3 pathway is regulated through epigenetic mechanisms in these cells. Since deregulated STAT3 signaling has a major impact on CTCL initiation and progression, a better understanding of the molecular basis of the miR-124/STAT3 axis may provide useful information for future personalized therapies.
Identifiants
pubmed: 33333886
pii: cells9122692
doi: 10.3390/cells9122692
pmc: PMC7765332
pii:
doi:
Substances chimiques
MIRN124 microRNA, human
0
MicroRNAs
0
STAT3 Transcription Factor
0
STAT3 protein, human
0
Janus Kinases
EC 2.7.10.2
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Références
Gastroenterology. 2000 Feb;118(2):356-67
pubmed: 10648464
Clin Cancer Res. 2016 Nov 1;22(21):5383-5393
pubmed: 27267853
Yale J Biol Med. 2020 Mar 27;93(1):111-121
pubmed: 32226341
Mol Cell. 2016 Sep 15;63(6):1089
pubmed: 27618489
Leukemia. 2001 May;15(5):787-93
pubmed: 11368440
Am J Hematol. 2009 Dec;84(12):821-5
pubmed: 19899130
Nat Genet. 2015 Dec;47(12):1465-70
pubmed: 26551667
Cytokine. 2014 Jan;65(1):17-23
pubmed: 24140069
Cancer Res. 2008 Apr 15;68(8):2689-98
pubmed: 18413736
Actas Dermosifiliogr. 2008 Apr;99(3):199-206
pubmed: 18358195
Oncol Lett. 2018 Nov;16(5):5875-5881
pubmed: 30344738
J Invest Dermatol. 2014 Oct;134(10):2639-2647
pubmed: 24756111
Cancers (Basel). 2019 Nov 02;11(11):
pubmed: 31684088
Am J Hematol. 2005 Sep;80(1):50-4
pubmed: 16138344
PLoS Biol. 2012;10(9):e1001395
pubmed: 23055831
Oncotarget. 2017 Oct 10;8(61):103775-103784
pubmed: 29262599
Cell Cycle. 2014;13(21):3331-5
pubmed: 25485578
Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):6086-6091
pubmed: 28533380
PLoS One. 2013 May 21;8(5):e63588
pubmed: 23704922
Oncol Rep. 2016 Mar;35(3):1385-94
pubmed: 26707908
Nucleic Acids Res. 2003 Feb 15;31(4):e15
pubmed: 12582260
Blood. 2011 Mar 24;117(12):3382-90
pubmed: 21252093
Leukemia. 2004 Jul;18(7):1288-95
pubmed: 15141228
Oncotarget. 2016 Mar 22;7(12):13563-74
pubmed: 26789110
Immunol Rev. 2018 Nov;286(1):148-159
pubmed: 30294965
Bioinformatics. 2004 Dec 12;20(18):3705-6
pubmed: 15297296
Mol Cell Biochem. 2014 Mar;388(1-2):219-31
pubmed: 24287565
Blood. 2016 Mar 10;127(10):1287-96
pubmed: 26738536
Haematologica. 2015 Nov;100(11):e450-3
pubmed: 26294736
Biochem Biophys Res Commun. 2013 Nov 29;441(4):873-9
pubmed: 24211205
Blood. 2019 Apr 18;133(16):1703-1714
pubmed: 30635287
Nat Genet. 2015 Dec;47(12):1426-34
pubmed: 26551670
Clin Cancer Res. 2016 Jul 1;22(13):3328-39
pubmed: 26851186
Nat Genet. 2015 Sep;47(9):1011-9
pubmed: 26192916
Mol Cancer. 2017 Mar 7;16(1):57
pubmed: 28270211
J Invest Dermatol. 2015 Apr;135(4):1128-1137
pubmed: 25405321
J Invest Dermatol. 2016 Jul;136(7):1490-1499
pubmed: 27039262
Protein Sci. 2018 Dec;27(12):1984-2009
pubmed: 30267440
Br J Dermatol. 2020 Jan;182(1):147-155
pubmed: 31049933
Curr Treat Options Oncol. 2016 Jul;17(7):33
pubmed: 27262707
Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6764-9
pubmed: 9192639
Cancer Res. 2015 Oct 1;75(19):4224-34
pubmed: 26238781
Science. 1997 Nov 28;278(5343):1612-5
pubmed: 9374458
J Invest Dermatol. 2015 Dec;135(12):3144-3152
pubmed: 26302069
J Invest Dermatol. 2011 Mar;131(3):762-8
pubmed: 21085192
J Invest Dermatol. 2008 Jul;128(7):1691-5
pubmed: 18200050
Oncoimmunology. 2017 Mar 17;6(5):e1306618
pubmed: 28638728
Toxicol Sci. 2018 Oct 1;165(2):462-474
pubmed: 29939353
Nat Genet. 2015 Sep;47(9):1056-60
pubmed: 26258847
Mol Cell Biol. 2008 Sep;28(17):5369-80
pubmed: 18591254
Blood. 2015 Jul 23;126(4):508-19
pubmed: 26082451
Blood. 2014 Mar 27;123(13):2034-43
pubmed: 24497536
Microb Pathog. 2019 Jun;131:65-74
pubmed: 30926417
J Invest Dermatol. 2012 Feb;132(2):440-7
pubmed: 21938013
J Invest Dermatol. 2018 Nov;138(11):2365-2376
pubmed: 29857068
Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):3805-10
pubmed: 24567410
J Invest Dermatol. 2018 May;138(5):1022-1026
pubmed: 29681389
Nat Commun. 2015 Sep 29;6:8470
pubmed: 26415585
J Invest Dermatol. 2010 Feb;130(2):563-75
pubmed: 19710685