Boric Acid-Fueled ATP Synthesis by F
Adenosine Triphosphate
/ chemistry
Boric Acids
/ chemistry
Dimyristoylphosphatidylcholine
/ chemistry
Fluorescent Dyes
/ chemistry
Membrane Lipids
/ chemistry
Mitochondrial Proton-Translocating ATPases
/ metabolism
Molecular Conformation
Oxidation-Reduction
Phosphatidylglycerols
/ chemistry
Photophosphorylation
Protons
Recombinant Fusion Proteins
/ chemistry
biochemical fuel
biomimetic architectures
biosynthesis
proton gradients
supramolecular assembly
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
29 03 2021
29 03 2021
Historique:
received:
07
12
2020
pubmed:
29
12
2020
medline:
21
7
2021
entrez:
28
12
2020
Statut:
ppublish
Résumé
Significant strides toward producing biochemical fuels have been achieved by mimicking natural oxidative and photosynthetic phosphorylation. Here, different from these strategies, we explore boric acid as a fuel for tuneable synthesis of energy-storing molecules in a cell-like supramolecular architecture. Specifically, a proton locked in boric acid is released in a modulated fashion by the choice of polyols. As a consequence, controlled proton gradients across the lipid membrane are established to drive ATP synthase embedded in the biomimetic architecture, which facilitates tuneable ATP production. This strategy paves a unique route to achieve highly efficient bioenergy conversion, holding broad applications in synthesis and devices that require biochemical fuels.
Identifiants
pubmed: 33369011
doi: 10.1002/anie.202016253
doi:
Substances chimiques
Boric Acids
0
Fluorescent Dyes
0
Membrane Lipids
0
Phosphatidylglycerols
0
Protons
0
Recombinant Fusion Proteins
0
Adenosine Triphosphate
8L70Q75FXE
dimyristoylphosphatidylglycerol
BI71WT9P3R
Mitochondrial Proton-Translocating ATPases
EC 3.6.3.-
boric acid
R57ZHV85D4
Dimyristoylphosphatidylcholine
U86ZGC74V5
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
7617-7620Informations de copyright
© 2020 Wiley-VCH GmbH.
Références
K. Ariga, Q. M. Ji, T. Mori, M. Naito, Y. Yamauchi, H. Abe, J. P. Hill, Chem. Soc. Rev. 2013, 42, 6322-6345;
B. C. Buddingh’, J. C. M. van Hest, Acc. Chem. Res. 2017, 50, 769-777;
M. Komiyama, K. Yoshimoto, M. Sisido, K. Ariga, Bull. Chem. Soc. Jpn. 2017, 90, 967-1004;
N. Carlsson, H. Gustafsson, C. Thorn, L. Olsson, K. Holmberg, B. Akerman, Adv. Colloid Interface Sci. 2014, 205, 339-360;
S. M. Chen, H. L. Gao, Y. B. Zhu, H. B. Yao, L. B. Mao, Q. Y. Song, J. Xia, Z. Pan, Z. He, H. A. Wu, S. H. Yu, Nat. Sci. Rev. 2018, 5, 703-714;
C. S. Hawes, T. Gunnlaugsson, Chem 2017, 2, 463-465;
Y. Cui, J. Fei, J. Li, Sci. China Chem. 2011, 41, 273-280;
L. Gao, Y. Zhang, L. Zhao, W. Niu, Y. Tang, F. Gao, P. Cai, Q. Yuan, X. Wang, H. Jiang, X. Gao, Sci. Adv. 2020, 6, eabb142;
K. Ariga, X. Jia, J. Song, J. P. Hill, D. T. Leong, Y. Jia, J. Li, Angew. Chem. Int. Ed. 2020, 59, 15424-15446;
Angew. Chem. 2020, 132, 15550-15574;
B. Roy, T. Govindaraju, Bull. Chem. Soc. Jpn. 2019, 92, 1883-1901.
G. Li, J. Fei, Y. Xu, Y. Li, J. Li, Adv. Funct. Mater. 2018, 28, 1706557;
X. Feng, Y. Jia, P. Cai, J. Fei, J. Li, ACS Nano 2016, 10, 556-561;
G. Steinberg-Yfrach, J. L. Rigaud, E. N. Durantini, A. L. Moore, D. Gust, T. A. Moore, Nature 1998, 392, 479-482;
L. Zhao, Y. Liu, R. Xing, X. Yan, Angew. Chem. Int. Ed. 2020, 59, 3793-3801;
Angew. Chem. 2020, 132, 3821-3829;
J. Han, K. Liu, R. Chang, L. Zhao, X. Yan, Angew. Chem. Int. Ed. 2019, 58, 2000-2004;
Angew. Chem. 2019, 131, 2022-2026;
Y. Li, Q. Zou, C. Yuan, S. Li, R. Xing, X. Yan, Angew. Chem. Int. Ed. 2018, 57, 17084-17088;
Angew. Chem. 2018, 130, 17330-17334.
H. J. Choi, C. D. Montemagno, Nano Lett. 2005, 5, 2538-2542;
Y. Xu, J. Fei, G. Li, T. Yuan, X. Xu, J. Li, Angew. Chem. Int. Ed. 2019, 58, 5572-5576;
Angew. Chem. 2019, 131, 5628-5632;
L. Otrin, N. Marusic, C. Bednarz, T. Vidakovic-Koch, I. Lieberwirth, K. Landfester, K. Sundmacher, Nano Lett. 2017, 17, 6816-6821.
O. Gutiérrez-Sanz, P. Natale, I. Marquez, M. C. Marques, S. Zacarias, M. Pita, I. A. Pereira, I. Lopez-Montero, A. L. De Lacey, M. Velez, Angew. Chem. Int. Ed. 2016, 55, 6216-6220;
Angew. Chem. 2016, 128, 6324-6328;
S. Berhanu, T. Ueda, Y. Kuruma, Nat. Commun. 2019, 10, 1325;
T. E. Miller, T. Beneyton, T. Schwander, C. Diehl, M. Girault, R. McLean, T. Chotel, P. Claus, N. S. Cortina, J. Baret, T. J. Erb, Science 2020, 368, 649-654;
K. Y. Lee, S. J. Park, K. A. Lee, S. H. Kim, H. Kim, Y. Meroz, L. Mahadevan, K. H. Jung, T. K. Ahn, K. K. Parker, K. Shin, Nat. Biotechnol. 2018, 36, 530-535.
P. Schwille, J. Spatz, K. Landfester, E. Bodenschatz, S. Herminghaus, V. Sourjik, T. J. Erb, P. Bastiaens, R. Lipowsky, A. Hyman, P. Dabrock, J. C. Baret, T. Vidakovic-Koch, P. Bieling, R. Dimova, H. Mutschler, T. Robinson, T. D. Tang, S. Wegner, K. Sundmacher, Angew. Chem. Int. Ed. 2018, 57, 13382-13392;
Angew. Chem. 2018, 130, 13566-13577.
Y. Xu, J. Fei, G. Li, T. Yuan, J. Li, ACS Nano 2017, 11, 10175-10183;
Y. Li, X. Feng, A. Wang, Y. Yang, J. Fei, B. Sun, Y. Jia, J. Li, Angew. Chem. Int. Ed. 2019, 58, 796-800;
Angew. Chem. 2019, 131, 806-810;
Y. Jia, M. Xuan, X. Feng, L. Duan, J. Li, J. Li, Chin. J. Chem. 2020, 38, 123-129.
G. Li, J. Fei, Y. Xu, B. Sun, J. Li, Angew. Chem. Int. Ed. 2019, 58, 1110-1114;
Angew. Chem. 2019, 131, 1122-1126.
P. Mitchell, Nature 1961, 191, 144-148.
J. Yu, J. Wang, Y. Zhang, G. Chen, W. Mao, Y. Ye, A. R. Kahkoska, J. B. Buse, R. Langer, Z. Gu, Nat. Biomed. Eng. 2020, 4, 499-506;
J. Wu, R. M. Bar, L. Guo, A. Noble, V. K. Aggarwal, Angew. Chem. Int. Ed. 2019, 58, 18830-18834;
Angew. Chem. 2019, 131, 19006-19010;
B. Josephson, C. Fehl, P. G. Isenegger, S. Nadal, T. H. Wright, A. W. J. Poh, B. J. Bower, A. M. Giltrap, L. Chen, C. Batchelor-McAuley, G. Roper, O. Arisa, J. B. I. Sap, A. Kawamura, A. J. Baldwin, S. Mohammed, R. G. Compton, V. Gouverneur, B. G. Davis, Nature 2020, 585, 530-537.
A. Lopalco, A. A. Lopedota, V. Laquintana, N. Denora, V. J. Stella, J. Pharm. Sci. 2020, 109, 2375-2386;
Y. Suzuki, D. Kusuyama, T. Sugaya, S. Iwatsuki, M. Inamo, H. D. Takagi, K. Ishihara, J. Org. Chem. 2020, 85, 5255-5264.
M. Kijewska, A. Czerwinska, S. Al-Harthi, G. Wolczanski, M. Waliczek, A. H. Emwas, M. Jaremko, L. Jaremko, P. Stefanowicz, Z. Szewczuk, Chem. Commun. 2020, 56, 8814-8817.
L. Duan, Q. He, K. Wang, X. Yan, Y. Cui, H. Möhwald, J. Li, Angew. Chem. Int. Ed. 2007, 46, 6996-7000;
Angew. Chem. 2007, 119, 7126-7130.
W. Qi, L. Duan, K. W. Wang, X. H. Yan, Y. Cui, Q. He, J. Li, Adv. Mater. 2008, 20, 601-605.
P. Turina, D. Samoray, P. Gräber, EMBO J. 2003, 22, 418-426.
Y. Xu, J. Fei, G. Li, T. Yuan, Y. Li, C. Wang, X. Li, J. Li, Angew. Chem. Int. Ed. 2017, 56, 12903-12907;
Angew. Chem. 2017, 129, 13083-13087.