Boric Acid-Fueled ATP Synthesis by F


Journal

Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543

Informations de publication

Date de publication:
29 03 2021
Historique:
received: 07 12 2020
pubmed: 29 12 2020
medline: 21 7 2021
entrez: 28 12 2020
Statut: ppublish

Résumé

Significant strides toward producing biochemical fuels have been achieved by mimicking natural oxidative and photosynthetic phosphorylation. Here, different from these strategies, we explore boric acid as a fuel for tuneable synthesis of energy-storing molecules in a cell-like supramolecular architecture. Specifically, a proton locked in boric acid is released in a modulated fashion by the choice of polyols. As a consequence, controlled proton gradients across the lipid membrane are established to drive ATP synthase embedded in the biomimetic architecture, which facilitates tuneable ATP production. This strategy paves a unique route to achieve highly efficient bioenergy conversion, holding broad applications in synthesis and devices that require biochemical fuels.

Identifiants

pubmed: 33369011
doi: 10.1002/anie.202016253
doi:

Substances chimiques

Boric Acids 0
Fluorescent Dyes 0
Membrane Lipids 0
Phosphatidylglycerols 0
Protons 0
Recombinant Fusion Proteins 0
Adenosine Triphosphate 8L70Q75FXE
dimyristoylphosphatidylglycerol BI71WT9P3R
Mitochondrial Proton-Translocating ATPases EC 3.6.3.-
boric acid R57ZHV85D4
Dimyristoylphosphatidylcholine U86ZGC74V5

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

7617-7620

Informations de copyright

© 2020 Wiley-VCH GmbH.

Références

 
K. Ariga, Q. M. Ji, T. Mori, M. Naito, Y. Yamauchi, H. Abe, J. P. Hill, Chem. Soc. Rev. 2013, 42, 6322-6345;
B. C. Buddingh’, J. C. M. van Hest, Acc. Chem. Res. 2017, 50, 769-777;
M. Komiyama, K. Yoshimoto, M. Sisido, K. Ariga, Bull. Chem. Soc. Jpn. 2017, 90, 967-1004;
N. Carlsson, H. Gustafsson, C. Thorn, L. Olsson, K. Holmberg, B. Akerman, Adv. Colloid Interface Sci. 2014, 205, 339-360;
S. M. Chen, H. L. Gao, Y. B. Zhu, H. B. Yao, L. B. Mao, Q. Y. Song, J. Xia, Z. Pan, Z. He, H. A. Wu, S. H. Yu, Nat. Sci. Rev. 2018, 5, 703-714;
C. S. Hawes, T. Gunnlaugsson, Chem 2017, 2, 463-465;
Y. Cui, J. Fei, J. Li, Sci. China Chem. 2011, 41, 273-280;
L. Gao, Y. Zhang, L. Zhao, W. Niu, Y. Tang, F. Gao, P. Cai, Q. Yuan, X. Wang, H. Jiang, X. Gao, Sci. Adv. 2020, 6, eabb142;
K. Ariga, X. Jia, J. Song, J. P. Hill, D. T. Leong, Y. Jia, J. Li, Angew. Chem. Int. Ed. 2020, 59, 15424-15446;
Angew. Chem. 2020, 132, 15550-15574;
B. Roy, T. Govindaraju, Bull. Chem. Soc. Jpn. 2019, 92, 1883-1901.
 
G. Li, J. Fei, Y. Xu, Y. Li, J. Li, Adv. Funct. Mater. 2018, 28, 1706557;
X. Feng, Y. Jia, P. Cai, J. Fei, J. Li, ACS Nano 2016, 10, 556-561;
G. Steinberg-Yfrach, J. L. Rigaud, E. N. Durantini, A. L. Moore, D. Gust, T. A. Moore, Nature 1998, 392, 479-482;
L. Zhao, Y. Liu, R. Xing, X. Yan, Angew. Chem. Int. Ed. 2020, 59, 3793-3801;
Angew. Chem. 2020, 132, 3821-3829;
J. Han, K. Liu, R. Chang, L. Zhao, X. Yan, Angew. Chem. Int. Ed. 2019, 58, 2000-2004;
Angew. Chem. 2019, 131, 2022-2026;
Y. Li, Q. Zou, C. Yuan, S. Li, R. Xing, X. Yan, Angew. Chem. Int. Ed. 2018, 57, 17084-17088;
Angew. Chem. 2018, 130, 17330-17334.
 
H. J. Choi, C. D. Montemagno, Nano Lett. 2005, 5, 2538-2542;
Y. Xu, J. Fei, G. Li, T. Yuan, X. Xu, J. Li, Angew. Chem. Int. Ed. 2019, 58, 5572-5576;
Angew. Chem. 2019, 131, 5628-5632;
L. Otrin, N. Marusic, C. Bednarz, T. Vidakovic-Koch, I. Lieberwirth, K. Landfester, K. Sundmacher, Nano Lett. 2017, 17, 6816-6821.
 
O. Gutiérrez-Sanz, P. Natale, I. Marquez, M. C. Marques, S. Zacarias, M. Pita, I. A. Pereira, I. Lopez-Montero, A. L. De Lacey, M. Velez, Angew. Chem. Int. Ed. 2016, 55, 6216-6220;
Angew. Chem. 2016, 128, 6324-6328;
S. Berhanu, T. Ueda, Y. Kuruma, Nat. Commun. 2019, 10, 1325;
T. E. Miller, T. Beneyton, T. Schwander, C. Diehl, M. Girault, R. McLean, T. Chotel, P. Claus, N. S. Cortina, J. Baret, T. J. Erb, Science 2020, 368, 649-654;
K. Y. Lee, S. J. Park, K. A. Lee, S. H. Kim, H. Kim, Y. Meroz, L. Mahadevan, K. H. Jung, T. K. Ahn, K. K. Parker, K. Shin, Nat. Biotechnol. 2018, 36, 530-535.
P. Schwille, J. Spatz, K. Landfester, E. Bodenschatz, S. Herminghaus, V. Sourjik, T. J. Erb, P. Bastiaens, R. Lipowsky, A. Hyman, P. Dabrock, J. C. Baret, T. Vidakovic-Koch, P. Bieling, R. Dimova, H. Mutschler, T. Robinson, T. D. Tang, S. Wegner, K. Sundmacher, Angew. Chem. Int. Ed. 2018, 57, 13382-13392;
Angew. Chem. 2018, 130, 13566-13577.
 
Y. Xu, J. Fei, G. Li, T. Yuan, J. Li, ACS Nano 2017, 11, 10175-10183;
Y. Li, X. Feng, A. Wang, Y. Yang, J. Fei, B. Sun, Y. Jia, J. Li, Angew. Chem. Int. Ed. 2019, 58, 796-800;
Angew. Chem. 2019, 131, 806-810;
Y. Jia, M. Xuan, X. Feng, L. Duan, J. Li, J. Li, Chin. J. Chem. 2020, 38, 123-129.
G. Li, J. Fei, Y. Xu, B. Sun, J. Li, Angew. Chem. Int. Ed. 2019, 58, 1110-1114;
Angew. Chem. 2019, 131, 1122-1126.
P. Mitchell, Nature 1961, 191, 144-148.
 
J. Yu, J. Wang, Y. Zhang, G. Chen, W. Mao, Y. Ye, A. R. Kahkoska, J. B. Buse, R. Langer, Z. Gu, Nat. Biomed. Eng. 2020, 4, 499-506;
J. Wu, R. M. Bar, L. Guo, A. Noble, V. K. Aggarwal, Angew. Chem. Int. Ed. 2019, 58, 18830-18834;
Angew. Chem. 2019, 131, 19006-19010;
B. Josephson, C. Fehl, P. G. Isenegger, S. Nadal, T. H. Wright, A. W. J. Poh, B. J. Bower, A. M. Giltrap, L. Chen, C. Batchelor-McAuley, G. Roper, O. Arisa, J. B. I. Sap, A. Kawamura, A. J. Baldwin, S. Mohammed, R. G. Compton, V. Gouverneur, B. G. Davis, Nature 2020, 585, 530-537.
 
A. Lopalco, A. A. Lopedota, V. Laquintana, N. Denora, V. J. Stella, J. Pharm. Sci. 2020, 109, 2375-2386;
Y. Suzuki, D. Kusuyama, T. Sugaya, S. Iwatsuki, M. Inamo, H. D. Takagi, K. Ishihara, J. Org. Chem. 2020, 85, 5255-5264.
M. Kijewska, A. Czerwinska, S. Al-Harthi, G. Wolczanski, M. Waliczek, A. H. Emwas, M. Jaremko, L. Jaremko, P. Stefanowicz, Z. Szewczuk, Chem. Commun. 2020, 56, 8814-8817.
L. Duan, Q. He, K. Wang, X. Yan, Y. Cui, H. Möhwald, J. Li, Angew. Chem. Int. Ed. 2007, 46, 6996-7000;
Angew. Chem. 2007, 119, 7126-7130.
W. Qi, L. Duan, K. W. Wang, X. H. Yan, Y. Cui, Q. He, J. Li, Adv. Mater. 2008, 20, 601-605.
P. Turina, D. Samoray, P. Gräber, EMBO J. 2003, 22, 418-426.
Y. Xu, J. Fei, G. Li, T. Yuan, Y. Li, C. Wang, X. Li, J. Li, Angew. Chem. Int. Ed. 2017, 56, 12903-12907;
Angew. Chem. 2017, 129, 13083-13087.

Auteurs

Xia Xu (X)

Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.
University of Chinese Academy of Sciences, 100190, Beijing, China.

Jinbo Fei (J)

Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.
University of Chinese Academy of Sciences, 100190, Beijing, China.

Youqian Xu (Y)

Third Military Medical University, 400038, Chongqing, China.

Guangle Li (G)

Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.

Weiguang Dong (W)

Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.

Huimin Xue (H)

Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.
University of Chinese Academy of Sciences, 100190, Beijing, China.

Junbai Li (J)

Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.
University of Chinese Academy of Sciences, 100190, Beijing, China.

Articles similaires

Adenosine Triphosphate Adenosine Diphosphate Mitochondrial ADP, ATP Translocases Binding Sites Mitochondria

A molecular mechanism for bright color variation in parrots.

Roberto Arbore, Soraia Barbosa, Jindich Brejcha et al.
1.00
Animals Feathers Pigmentation Parrots Aldehyde Dehydrogenase
Osteosarcoma Animals Glutathione Oxidation-Reduction Mice

Molecular probes for tracking lipid droplet membrane dynamics.

Lingxiu Kong, Qingjie Bai, Cuicui Li et al.
1.00
Lipid Droplets Molecular Probes Humans Membrane Proteins Animals

Classifications MeSH