Transcriptomic Changes of Murine Visceral Fat Exposed to Intermittent Hypoxia at Single Cell Resolution.
Adipocytes
/ metabolism
Animals
Computational Biology
/ methods
Gene Expression Profiling
Gene Expression Regulation
Gene Ontology
High-Throughput Nucleotide Sequencing
Hypoxia
/ metabolism
Intra-Abdominal Fat
/ metabolism
Mice
Molecular Sequence Annotation
RNA, Small Untranslated
Single-Cell Analysis
Transcriptome
OSA
bulk RNA-seq
deconvolution
intermittent hypoxia
single cell
sleep apnea
snRNA-seq
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
29 Dec 2020
29 Dec 2020
Historique:
received:
04
11
2020
revised:
22
11
2020
accepted:
24
12
2020
entrez:
1
1
2021
pubmed:
2
1
2021
medline:
30
3
2021
Statut:
epublish
Résumé
Intermittent hypoxia (IH) is a hallmark of obstructive sleep apnea (OSA) and induces metabolic dysfunction manifesting as inflammation, increased lipolysis and insulin resistance in visceral white adipose tissues (vWAT). However, the cell types and their corresponding transcriptional pathways underlying these functional perturbations are unknown. Here, we applied single nucleus RNA sequencing (snRNA-seq) coupled with aggregate RNA-seq methods to evaluate the cellular heterogeneity in vWAT following IH exposures mimicking OSA. C57BL/6 male mice were exposed to IH and room air (RA) for 6 weeks, and nuclei from vWAT were isolated and processed for snRNA-seq followed by differential expressed gene (DEGs) analyses by cell type, along with gene ontology and canonical pathways enrichment tests of significance. IH induced significant transcriptional changes compared to RA across 14 different cell types identified in vWAT. We identified cell-specific signature markers, transcriptional networks, metabolic signaling pathways, and cellular subpopulation enrichment in vWAT. Globally, we also identify 298 common regulated genes across multiple cellular types that are associated with metabolic pathways. Deconvolution of cell types in vWAT using global RNA-seq revealed that distinct adipocytes appear to be differentially implicated in key aspects of metabolic dysfunction. Thus, the heterogeneity of vWAT and its response to IH at the cellular level provides important insights into the metabolic morbidity of OSA and may possibly translate into therapeutic targets.
Identifiants
pubmed: 33383883
pii: ijms22010261
doi: 10.3390/ijms22010261
pmc: PMC7795619
pii:
doi:
Substances chimiques
RNA, Small Untranslated
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Références
Nat Biotechnol. 2019 Jul;37(7):773-782
pubmed: 31061481
Elife. 2018 Sep 28;7:
pubmed: 30265241
J Thorac Dis. 2018 Dec;10(Suppl 34):S4201-S4211
pubmed: 30687536
BMC Genomics. 2017 Feb 3;18(1):126
pubmed: 28158971
Endocrinology. 2015 Feb;156(2):437-43
pubmed: 25406018
Arch Physiol Biochem. 2008 Oct;114(4):267-76
pubmed: 18946787
Sleep Breath. 2020 Jun;24(2):761-770
pubmed: 31845084
Dev Cell. 2002 Jul;3(1):39-49
pubmed: 12110166
Cell Rep. 2019 May 28;27(9):2748-2758.e3
pubmed: 31141696
Eur Respir J. 2020 Aug 6;56(2):
pubmed: 32265303
Nature. 2018 Aug;560(7719):494-498
pubmed: 30089906
J Clin Sleep Med. 2020 Sep 18;:
pubmed: 32955012
Psychometrika. 2011 Apr 1;76(2):306-317
pubmed: 23258944
Nature. 2014 Jun 19;510(7505):363-9
pubmed: 24919153
Proc Natl Acad Sci U S A. 2018 May 29;115(22):E5096-E5105
pubmed: 29760084
Science. 2015 Mar 6;347(6226):1138-42
pubmed: 25700174
Diabetes Metab Syndr Obes. 2016 Aug 25;9:281-310
pubmed: 27601926
Nat Metab. 2020 Jan;2(1):97-109
pubmed: 32066997
Nat Rev Genet. 2016 Mar;17(3):175-88
pubmed: 26806412
Diabetes. 2001 Sep;50(9):2080-6
pubmed: 11522674
Cell Metab. 2012 Apr 4;15(4):480-91
pubmed: 22482730
J Exp Biol. 2018 Mar 7;221(Pt Suppl 1):
pubmed: 29514879
Nature. 2019 May;569(7755):222-228
pubmed: 30971824
Circ Res. 2018 Jun 8;122(12):1661-1674
pubmed: 29545365
J Appl Physiol (1985). 2009 May;106(5):1538-44
pubmed: 19265062
Science. 2017 Mar 31;355(6332):
pubmed: 28360267
Mol Cell. 2017 Feb 16;65(4):631-643.e4
pubmed: 28212749
Clin Imaging. 2013 May-Jun;37(3):514-9
pubmed: 23116724
Database (Oxford). 2019 Jan 1;2019:
pubmed: 30951143
Cell Syst. 2016 Oct 26;3(4):346-360.e4
pubmed: 27667365
BMC Cancer. 2019 Jul 19;19(1):715
pubmed: 31324168
Elife. 2019 Oct 23;8:
pubmed: 31644425
J Cachexia Sarcopenia Muscle. 2020 Oct;11(5):1351-1363
pubmed: 32643301
Science. 2018 Apr 13;360(6385):176-182
pubmed: 29545511
Front Physiol. 2020 Jul 15;11:831
pubmed: 32760294
J Immunol. 2009 Jan 1;182(1):636-46
pubmed: 19109197
Sleep Breath. 2005 Dec;9(4):176-80
pubmed: 16283228
Diabetes. 2014 Oct;63(10):3230-41
pubmed: 24812424
Nat Biotechnol. 2019 Aug;37(8):907-915
pubmed: 31375807
Nat Methods. 2015 May;12(5):453-7
pubmed: 25822800
Diabetes Metab. 2017 Jun;43(3):240-247
pubmed: 28131740
Nat Biotechnol. 2013 Aug;31(8):748-52
pubmed: 23873083
Cell Metab. 2013 Sep 3;18(3):355-67
pubmed: 24011071
Science. 2016 Jun 24;352(6293):1586-90
pubmed: 27339989
Genome Biol. 2019 Dec 23;20(1):296
pubmed: 31870423
Cureus. 2020 Aug 20;12(8):e9905
pubmed: 32968568
Eur Respir J. 2017 Apr 19;49(4):
pubmed: 28424360
Nat Rev Endocrinol. 2016 May;12(5):290-8
pubmed: 26939978
Nat Cell Biol. 2017 Apr;19(4):271-281
pubmed: 28319093
Cell Metab. 2013 May 7;17(5):644-656
pubmed: 23583168
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W741-8
pubmed: 15980575
Cell Metab. 2018 Aug 7;28(2):300-309.e4
pubmed: 29937373
Nat Med. 2013 Oct;19(10):1338-44
pubmed: 23995282
Am J Respir Cell Mol Biol. 2020 Dec;63(6):739-747
pubmed: 32804550
Int J Obes (Lond). 2008 Jan;32(1):112-20
pubmed: 17637700
Immunometabolism. 2019;1:
pubmed: 31396408
Science. 2016 Aug 26;353(6302):925-8
pubmed: 27471252
Am J Respir Cell Mol Biol. 2017 Apr;56(4):477-487
pubmed: 28107636
Nature. 2018 Jul;559(7712):103-108
pubmed: 29925944
Life Sci. 2019 Dec 1;238:116959
pubmed: 31628916
Nature. 2005 Jul 21;436(7049):356-62
pubmed: 16034410
PLoS One. 2020 Aug 5;15(8):e0236667
pubmed: 32756570
Genome Biol. 2017 May 8;18(1):84
pubmed: 28482897
Science. 2017 Aug 18;357(6352):661-667
pubmed: 28818938
Cell. 2010 Mar 5;140(5):744-52
pubmed: 20211142
Bioinformatics. 2020 Apr 15;36(8):2587-2588
pubmed: 31841127
Methods Mol Biol. 2017;1514:203-239
pubmed: 27787803
Trends Endocrinol Metab. 2015 Oct;26(10):515-523
pubmed: 26412153
Nat Biotechnol. 2018 Jun;36(5):411-420
pubmed: 29608179
Sleep. 2011 Aug 01;34(8):1127-33
pubmed: 21804675
Cureus. 2020 Sep 13;12(9):e10424
pubmed: 32953361
J Mol Med (Berl). 2012 Apr;90(4):435-45
pubmed: 22086141
Mol Cell Endocrinol. 2014 Nov;397(1-2):51-8
pubmed: 25132648
Nat Commun. 2020 Apr 24;11(1):1971
pubmed: 32332754
Eur Respir Rev. 2019 Jun 26;28(152):
pubmed: 31243096
EMBO J. 2011 Aug 09;30(18):3754-65
pubmed: 21829168
Sci Rep. 2020 Aug 20;10(1):14055
pubmed: 32820223
Sleep. 2017 Mar 1;40(3):
pubmed: 28329220
Diab Vasc Dis Res. 2013 Nov;10(6):472-82
pubmed: 24002671
Cell. 2019 Jun 13;177(7):1915-1932.e16
pubmed: 31130381
Clin Transl Med. 2017 Dec;6(1):10
pubmed: 28220395
Nat Commun. 2019 Jan 22;10(1):380
pubmed: 30670690
Am J Hum Genet. 2019 Jun 6;104(6):1013-1024
pubmed: 31130283
Curr Opin Immunol. 2013 Oct;25(5):571-8
pubmed: 24148234
Front Endocrinol (Lausanne). 2018 Jul 10;9:376
pubmed: 30042734
Am J Respir Cell Mol Biol. 2017 Oct;57(4):477-486
pubmed: 28594573
Nat Rev Immunol. 2011 Feb;11(2):85-97
pubmed: 21252989
Plast Reconstr Surg. 2009 Oct;124(4):1087-1097
pubmed: 19935292
J Thorac Dis. 2015 Aug;7(8):1343-57
pubmed: 26380761
Sleep. 2018 Jul 1;41(7):
pubmed: 29746662
Cell. 2017 Feb 9;168(4):629-643
pubmed: 28187285
Front Cell Dev Biol. 2016 Oct 25;4:116
pubmed: 27826548
Nature. 2011 Apr 7;472(7341):90-4
pubmed: 21399628
Proc Natl Acad Sci U S A. 2015 Jun 9;112(23):7285-90
pubmed: 26060301
Adipocyte. 2015 Jan 29;4(3):217-21
pubmed: 26257994
Nat Biotechnol. 2020 Jun;38(6):737-746
pubmed: 32341560
Circ Res. 2005 Sep 16;97(6):512-23
pubmed: 16166562
Mol Cell Biol. 2013 Sep;33(18):3659-66
pubmed: 23858058
Biochem Biophys Res Commun. 2020 Jan 15;521(3):625-631
pubmed: 31677795
Nature. 2013 Jun 13;498(7453):236-40
pubmed: 23685454
Biomed Res Int. 2020 Sep 21;2020:7658230
pubmed: 33015179
J Clin Invest. 2020 Jan 2;130(1):247-257
pubmed: 31573981
Stem Cell Res Ther. 2017 Jun 15;8(1):145
pubmed: 28619097
Cell. 2019 Jun 13;177(7):1888-1902.e21
pubmed: 31178118
Sci Rep. 2017 Sep 11;7(1):11180
pubmed: 28894286
Cell Syst. 2018 Feb 28;6(2):171-179.e5
pubmed: 29454938
Genome Biol. 2018 Apr 5;19(1):47
pubmed: 29622030
Oncologist. 2018 Dec;23(12):1415-1425
pubmed: 29739896
J Clin Endocrinol Metab. 2011 Dec;96(12):E1990-8
pubmed: 21994960
Curr Cardiol Rep. 2020 Jan 18;22(2):6
pubmed: 31955254
Int J Mol Sci. 2018 Oct 29;19(11):
pubmed: 30380647
J Sleep Res. 2020 Sep 30;:e13202
pubmed: 32996666
Ther Adv Respir Dis. 2019 Jan-Dec;13:1753466619895229
pubmed: 31852426
Bioinformatics. 2018 Jun 1;34(11):1969-1979
pubmed: 29351586
PLoS Genet. 2015 May 08;11(5):e1005223
pubmed: 25955312
Biochem J. 2020 Feb 14;477(3):583-600
pubmed: 32026949
Am J Physiol Regul Integr Comp Physiol. 2016 Jan 1;310(1):R55-65
pubmed: 26538237
J Investig Med. 2016 Apr;64(4):830-2
pubmed: 26969750
Am J Hum Genet. 2017 Mar 2;100(3):428-443
pubmed: 28257690
Sleep Med Rev. 2018 Dec;42:211-219
pubmed: 30279095
Am J Respir Crit Care Med. 2015 Jul 1;192(1):96-105
pubmed: 25897569
Genome Res. 2012 Nov;22(11):2153-62
pubmed: 23019147
Development. 2015 Sep 15;142(18):3151-65
pubmed: 26293300
J Physiol. 2017 Apr 15;595(8):2423-2430
pubmed: 27901270
Sci Rep. 2017 Nov 8;7(1):15066
pubmed: 29118406
Cell. 2018 Feb 8;172(4):650-665
pubmed: 29425488
Int J Obes (Lond). 2018 Jun;42(6):1127-1139
pubmed: 29892042
Hepatology. 2016 Nov;64(5):1534-1546
pubmed: 27227735
Genes (Basel). 2017 Dec 05;8(12):
pubmed: 29206167
Nat Biotechnol. 2015 May;33(5):495-502
pubmed: 25867923