The amino acid transporter SLC7A5 is required for efficient growth of KRAS-mutant colorectal cancer.
5' Untranslated Regions
/ genetics
Amino Acid Transport System ASC
/ metabolism
Animals
Carcinogenesis
/ pathology
Cell Proliferation
Colorectal Neoplasms
/ genetics
Gene Expression Regulation, Neoplastic
Glutamine
/ metabolism
Humans
Intestinal Mucosa
/ metabolism
Kaplan-Meier Estimate
Large Neutral Amino Acid-Transporter 1
/ metabolism
Mechanistic Target of Rapamycin Complex 1
/ metabolism
Mice, Inbred C57BL
Minor Histocompatibility Antigens
/ metabolism
Mutation
/ genetics
Neoplasm Metastasis
Oncogenes
Proto-Oncogene Proteins p21(ras)
/ genetics
RNA, Messenger
/ genetics
Signal Transduction
TOR Serine-Threonine Kinases
/ metabolism
Journal
Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904
Informations de publication
Date de publication:
01 2021
01 2021
Historique:
received:
14
02
2020
accepted:
20
11
2020
entrez:
8
1
2021
pubmed:
9
1
2021
medline:
11
2
2021
Statut:
ppublish
Résumé
Oncogenic KRAS mutations and inactivation of the APC tumor suppressor co-occur in colorectal cancer (CRC). Despite efforts to target mutant KRAS directly, most therapeutic approaches focus on downstream pathways, albeit with limited efficacy. Moreover, mutant KRAS alters the basal metabolism of cancer cells, increasing glutamine utilization to support proliferation. We show that concomitant mutation of Apc and Kras in the mouse intestinal epithelium profoundly rewires metabolism, increasing glutamine consumption. Furthermore, SLC7A5, a glutamine antiporter, is critical for colorectal tumorigenesis in models of both early- and late-stage metastatic disease. Mechanistically, SLC7A5 maintains intracellular amino acid levels following KRAS activation through transcriptional and metabolic reprogramming. This supports the increased demand for bulk protein synthesis that underpins the enhanced proliferation of KRAS-mutant cells. Moreover, targeting protein synthesis, via inhibition of the mTORC1 regulator, together with Slc7a5 deletion abrogates the growth of established Kras-mutant tumors. Together, these data suggest SLC7A5 as an attractive target for therapy-resistant KRAS-mutant CRC.
Identifiants
pubmed: 33414552
doi: 10.1038/s41588-020-00753-3
pii: 10.1038/s41588-020-00753-3
doi:
Substances chimiques
5' Untranslated Regions
0
Amino Acid Transport System ASC
0
Large Neutral Amino Acid-Transporter 1
0
Minor Histocompatibility Antigens
0
RNA, Messenger
0
SLC1A5 protein, human
0
Slc7a5 protein, mouse
0
Glutamine
0RH81L854J
Mechanistic Target of Rapamycin Complex 1
EC 2.7.11.1
TOR Serine-Threonine Kinases
EC 2.7.11.1
Hras protein, mouse
EC 3.6.5.2
Proto-Oncogene Proteins p21(ras)
EC 3.6.5.2
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
16-26Subventions
Organisme : Medical Research Council
ID : MC_UP_A600_1024
Pays : United Kingdom
Organisme : Cancer Research UK
ID : A12481
Pays : United Kingdom
Organisme : Cancer Research UK
ID : C50686/A29834
Pays : United Kingdom
Organisme : Cancer Research UK
ID : A29055
Pays : United Kingdom
Organisme : Cancer Research UK
ID : A17196
Pays : United Kingdom
Organisme : Cancer Research UK
ID : A21139
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/N017005/1
Pays : United Kingdom
Organisme : Cancer Research UK
ID : 29252
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 201487
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/N021800/1
Pays : United Kingdom
Organisme : Cancer Research UK
ID : A25045
Pays : United Kingdom
Organisme : Cancer Research UK
ID : A24388
Pays : United Kingdom
Investigateurs
Andrew Campbell
(A)
Arafath Najumudeen
(A)
Alan M Race
(AM)
Ian Gilmore
(I)
Greg McMahon
(G)
Paul Grant
(P)
Bin Yan
(B)
Adam J Taylor
(AJ)
Efstathios Elia
(E)
Spencer Thomas
(S)
Catherine Munteanu
(C)
Ala Al-Afeef
(A)
Amy Burton
(A)
Jean-Luc Vorng
(JL)
Xavier Loizeau
(X)
Weiwei Zhou
(W)
Ammar Nasif
(A)
Ariadna Gonzalez
(A)
Hanifa Koquna
(H)
Martin Metodiev
(M)
Melina Kyriazi
(M)
Junting Zhang
(J)
Lucas Zeiger
(L)
Johan Vande-Voorde
(J)
Jennifer Morton
(J)
Dmitry Soloviev
(D)
Vincen Wu
(V)
Yuchen Xiang
(Y)
Daniel McGill
(D)
Stefania Maneta-Stravrakaki
(S)
Jaynisha Mistry
(J)
Emine Kazanc
(E)
Mariia Yuneva
(M)
Yulia Panina
(Y)
Chandan Seth Nanda
(CS)
Peter Kreuzaler
(P)
Avinash Ghanate
(A)
Stephanie Ling
(S)
Jack Richings
(J)
Kevin Brindle
(K)
Anastasia Tsyben
(A)
George Poulogiannis
(G)
Amit Gupta
(A)
Aurelien Tripp
(A)
Evi Karali
(E)
Nikolaos Koundouros
(N)
Thanasis Tsalikis
(T)
John Marshall
(J)
Magali Garrett
(M)
Harry Hall
(H)
Commentaires et corrections
Type : CommentIn
Références
Muzny, D. M. et al. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).
doi: 10.1038/nature11252
Faller, W. J. et al. mTORC1-mediated translational elongation limits intestinal tumour initiation and growth. Nature 517, 497–500 (2015).
pubmed: 25383520
doi: 10.1038/nature13896
Maddocks, O. D. K. et al. Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature 544, 372–376 (2017).
pubmed: 28425994
doi: 10.1038/nature22056
Schwitalla, S. et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152, 25–38 (2013).
pubmed: 23273993
doi: 10.1016/j.cell.2012.12.012
Hung, K. E. et al. Development of a mouse model for sporadic and metastatic colon tumors and its use in assessing drug treatment. Proc. Natl Acad. Sci. USA 107, 1565–1570 (2010).
pubmed: 20080688
doi: 10.1073/pnas.0908682107
pmcid: 2824379
Haigis, K. M. et al. Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon. Nat. Genet. 40, 600–608 (2008).
pubmed: 18372904
pmcid: 2410301
doi: 10.1038/ng.115
Ng, K. et al. Phase II study of everolimus in patients with metastatic colorectal adenocarcinoma previously treated with bevacizumab-, fluoropyrimidine-, oxaliplatin-, and irinotecan-based regimens. Clin. Cancer Res. 19, 3987–3995 (2013).
pubmed: 23743569
pmcid: 3725595
doi: 10.1158/1078-0432.CCR-13-0027
Spindler, K.-L. G. et al. Phase II trial of temsirolimus alone and in combination with irinotecan for KRAS mutant metastatic colorectal cancer: outcome and results of KRAS mutational analysis in plasma. Acta Oncol. 52, 963–970 (2013).
pubmed: 23514584
doi: 10.3109/0284186X.2013.776175
Gimple, R. C. & Wang, X. RAS: striking at the core of the oncogenic circuitry. Front. Oncol. 9, 965 (2019).
White, E. Exploiting the bad eating habits of Ras-driven cancers. Genes Dev. 27, 2065–2071 (2013).
pubmed: 24115766
pmcid: 3850091
doi: 10.1101/gad.228122.113
Son, J. et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496, 101–105 (2013).
pubmed: 23535601
pmcid: 3656466
doi: 10.1038/nature12040
Mayers, J. R. & Vander Heiden, M. G. Famine versus feast: understanding the metabolism of tumors in vivo. Trends Biochem. Sci. 40, 130–140 (2015).
pubmed: 25639751
pmcid: 4340757
doi: 10.1016/j.tibs.2015.01.004
Guinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015).
pubmed: 26457759
pmcid: 4636487
doi: 10.1038/nm.3967
Davidson, S. M. et al. Environment impacts the metabolic dependencies of Ras-driven non-small cell lung cancer. Cell Metab. 23, 517–528 (2016).
pubmed: 26853747
pmcid: 4785096
doi: 10.1016/j.cmet.2016.01.007
Biancur, D. E. et al. Compensatory metabolic networks in pancreatic cancers upon perturbation of glutamine metabolism. Nat. Commun. 8, 15965 (2017).
pubmed: 28671190
pmcid: 5500878
doi: 10.1038/ncomms15965
Mayers, J. R. et al. Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers. Science 353, 1161–1165 (2016).
pubmed: 27609895
pmcid: 5245791
doi: 10.1126/science.aaf5171
McBrayer, S. K. et al. Transaminase inhibition by 2-hydroxyglutarate impairs glutamate biosynthesis and redox homeostasis in glioma. Cell 175, 101–116 (2018).
pubmed: 30220459
pmcid: 6219629
doi: 10.1016/j.cell.2018.08.038
César-Razquin, A. et al. A call for systematic research on solute carriers. Cell 162, 478–487 (2015).
pubmed: 26232220
doi: 10.1016/j.cell.2015.07.022
Nicklin, P. et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136, 521–534 (2009).
pubmed: 19203585
pmcid: 3733119
doi: 10.1016/j.cell.2008.11.044
Saito, Y. et al. LLGL2 rescues nutrient stress by promoting leucine uptake in ER
Collins, M. A. et al. Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. J. Clin. Invest. 122, 639–653 (2012).
pubmed: 22232209
pmcid: 3266788
doi: 10.1172/JCI59227
Elorza, A. et al. HIF2α acts as an mTORC1 activator through the amino acid carrier SLC7A5. Mol. Cell 48, 681–691 (2012).
pubmed: 23103253
doi: 10.1016/j.molcel.2012.09.017
Grzes, K. M. et al. Control of amino acid transport coordinates metabolic reprogramming in T-cell malignancy. Leukemia 31, 2771–2779 (2017).
pubmed: 28546582
pmcid: 5729345
doi: 10.1038/leu.2017.160
Barker, N. et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457, 608–611 (2009).
doi: 10.1038/nature07602
pubmed: 19092804
Mizushima, N. & Komatsu, M. Autophagy: renovation of cells and tissues. Cell 147, 728–741 (2011).
pubmed: 22078875
doi: 10.1016/j.cell.2011.10.026
Di Nicolantonio, F. et al. Deregulation of the PI3K and KRAS signaling pathways in human cancer cells determines their response to everolimus. J. Clin. Invest. 120, 2858–2866 (2010).
pubmed: 20664172
pmcid: 2912177
doi: 10.1172/JCI37539
Buck, E. et al. Rapamycin synergizes with the epidermal growth factor receptor inhibitor erlotinib in non-small-cell lung, pancreatic, colon, and breast tumors. Mol. Cancer Ther. 5, 2676–2684 (2006).
pubmed: 17121914
doi: 10.1158/1535-7163.MCT-06-0166
Skrzypczak, M. et al. Modeling oncogenic signaling in colon tumors by multidirectional analyses of microarray data directed for maximization of analytical reliability. PLoS ONE 5, e13091 (2010).
pubmed: 20957034
pmcid: 2948500
doi: 10.1371/journal.pone.0013091
Dong, H. K. et al. Whole genome analysis for liver metastasis gene signatures in colorectal cancer. Int. J. Cancer 121, 2005–2012 (2007).
doi: 10.1002/ijc.22975
Kaiser, S. et al. Transcriptional recapitulation and subversion of embryonic colon development by mouse colon tumor models and human colon cancer. Genome Biol. 8, R131 (2007).
Marisa, L. et al. Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med. 10, e1001453 (2013).
pubmed: 23700391
pmcid: 3660251
doi: 10.1371/journal.pmed.1001453
Jackstadt, R. et al. Epithelial NOTCH signaling rewires the tumor microenvironment of colorectal cancer to drive poor-prognosis subtypes and metastasis. Cancer Cell 36, 319–336 (2019).
pubmed: 31526760
pmcid: 6853173
doi: 10.1016/j.ccell.2019.08.003
Gaglio, D. et al. Oncogenic K‐Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol. Syst. Biol. 7, 523 (2011).
pubmed: 21847114
pmcid: 3202795
doi: 10.1038/msb.2011.56
Romero, R. et al. Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Nat. Med. 23, 1362–1368 (2017).
pubmed: 28967920
pmcid: 5677540
doi: 10.1038/nm.4407
Hosios, A. M. et al. Amino acids rather than glucose account for the majority of cell mass in proliferating mammalian cells. Dev. Cell 36, 540–549 (2016).
pubmed: 26954548
pmcid: 4766004
doi: 10.1016/j.devcel.2016.02.012
Commisso, C. et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497, 633–637 (2013).
pubmed: 23665962
pmcid: 3810415
doi: 10.1038/nature12138
el Marjou, F. et al. Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis 39, 186–193 (2004).
Shibata, H. et al. Rapid colorectal adenoma formation initiated by conditional targeting of the APC gene. Science 278, 120–133 (1997).
pubmed: 9311916
doi: 10.1126/science.278.5335.120
Jackson, E. L. et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 15, 3243–3248 (2001).
pubmed: 11751630
pmcid: 312845
doi: 10.1101/gad.943001
Sinclair, L. V. et al. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat. Immunol. 14, 500–508 (2013).
pubmed: 23525088
pmcid: 3672957
doi: 10.1038/ni.2556
Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).
Jonkers, J. et al. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat. Genet. 29, 418–425 (2001).
pubmed: 11694875
doi: 10.1038/ng747
Murtaugh, L. C., Stanger, B. Z., Kwan, K. M. & Melton, D. A. Notch signaling controls multiple steps of pancreatic differentiation. Proc. Natl Acad. Sci. USA 100, 14920–14925 (2003).
pubmed: 14657333
doi: 10.1073/pnas.2436557100
pmcid: 299853
Finlay, M. R. V. et al. Discovery of a thiadiazole–pyridazine-based allosteric glutaminase 1 inhibitor series that demonstrates oral bioavailability and activity in tumor xenograft models. J. Med. Chem. 62, 6540–6560 (2019).
pubmed: 31199640
doi: 10.1021/acs.jmedchem.9b00260
Dannhorn, A. et al. Universal sample preparation unlocking multimodal molecular tissue imaging. Anal. Chem. 92, 11080–11088 (2020).
pubmed: 32519547
doi: 10.1021/acs.analchem.0c00826
Chambers, M. C. et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918–920 (2012).
pubmed: 23051804
pmcid: 3471674
doi: 10.1038/nbt.2377
Race, A. M., Styles, I. B. & Bunch, J. Inclusive sharing of mass spectrometry imaging data requires a converter for all. J. Proteomics 75, 5111–5112 (2012).
pubmed: 22641155
doi: 10.1016/j.jprot.2012.05.035
Race, A. M. et al. SpectralAnalysis: software for the masses. Anal. Chem. 88, 9451–9458 (2016).
pubmed: 27558772
doi: 10.1021/acs.analchem.6b01643
Dexter, A., Race, A. M., Styles, I. B. & Bunch, J. Testing for multivariate normality in mass spectrometry imaging data: a robust statistical approach for clustering evaluation and the generation of synthetic mass spectrometry imaging data sets. Anal. Chem. 88, 10893–10899 (2016).
pubmed: 27641083
doi: 10.1021/acs.analchem.6b02139
Sakamaki, J. I. et al. Bromodomain protein BRD4 Is a transcriptional repressor of autophagy and lysosomal function. Mol. Cell 66, 517–532 (2017).
Liu, R. et al. Why weight? Modelling sample and observational level variability improves power in RNA-seq analyses. Nucleic Acids Res. 43, e97 (2015).
pubmed: 25925576
pmcid: 4551905
doi: 10.1093/nar/gkv412
Charif, D. & Lobry, J. R. SeqinR 1.0-2: a contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis 207–232 (Springer, 2007).
Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128 (2013).
pubmed: 23586463
pmcid: 3637064
doi: 10.1186/1471-2105-14-128
Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).
Lewis, D. Y. et al. [
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
pubmed: 22743772
doi: 10.1038/nmeth.2019