Cabozantinib for neurofibromatosis type 1-related plexiform neurofibromas: a phase 2 trial.
Adolescent
Adult
Anilides
/ adverse effects
Animals
Disease Models, Animal
Female
Genes, Neurofibromatosis 1
Humans
Male
Mice
Mice, Mutant Strains
Neurofibroma, Plexiform
/ drug therapy
Neurofibromatosis 1
/ drug therapy
Pain Measurement
Prospective Studies
Protein Kinase Inhibitors
/ adverse effects
Pyridines
/ adverse effects
Quality of Life
Receptor Protein-Tyrosine Kinases
/ antagonists & inhibitors
Translational Research, Biomedical
Young Adult
Journal
Nature medicine
ISSN: 1546-170X
Titre abrégé: Nat Med
Pays: United States
ID NLM: 9502015
Informations de publication
Date de publication:
01 2021
01 2021
Historique:
received:
19
12
2019
accepted:
25
11
2020
entrez:
14
1
2021
pubmed:
15
1
2021
medline:
23
1
2021
Statut:
ppublish
Résumé
Neurofibromatosis type 1 (NF1) plexiform neurofibromas (PNs) are progressive, multicellular neoplasms that cause morbidity and may transform to sarcoma. Treatment of Nf1
Identifiants
pubmed: 33442015
doi: 10.1038/s41591-020-01193-6
pii: 10.1038/s41591-020-01193-6
pmc: PMC8275010
mid: NIHMS1705876
doi:
Substances chimiques
Anilides
0
Protein Kinase Inhibitors
0
Pyridines
0
cabozantinib
1C39JW444G
Receptor Protein-Tyrosine Kinases
EC 2.7.10.1
Banques de données
ClinicalTrials.gov
['NCT02101736']
Types de publication
Clinical Trial, Phase II
Journal Article
Multicenter Study
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
165-173Subventions
Organisme : US Army Medical Research and Development Command
ID : W81XWH-12-01-0155
Pays : International
Organisme : NCI NIH HHS
ID : U54 CA196519
Pays : United States
Organisme : U.S. Department of Health & Human Services | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
ID : K12-HD000850
Pays : International
Organisme : NICHD NIH HHS
ID : K12 HD000850
Pays : United States
Organisme : U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
ID : U54-CA196519-04
Pays : International
Investigateurs
Chie-Schin Shih
(CS)
Amy E Armstrong
(AE)
Références
PhRMA. A Decade of Innovation In Rare Diseases. http://phrma-docs.phrma.org/sites/default/files/pdf/PhRMA-Decade-of-Innovation-Rare-Diseases.pdf (2015).
Friedman, J. M. Epidemiology of neurofibromatosis type 1. Am. J. Med. Genet. 89, 1–6 (1999).
pubmed: 10469430
doi: 10.1002/(SICI)1096-8628(19990326)89:1<1::AID-AJMG3>3.0.CO;2-8
Wallace, M. R. et al. Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science 249, 181–186 (1990).
pubmed: 2134734
doi: 10.1126/science.2134734
Viskochil, D. et al. Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus. Cell 62, 187–192 (1990).
pubmed: 1694727
doi: 10.1016/0092-8674(90)90252-A
Ballester, R. et al. The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 63, 851–859 (1990).
pubmed: 2121371
doi: 10.1016/0092-8674(90)90151-4
Gutmann, D. H., Blakeley, J. O., Korf, B. R. & Packer, R. J. Optimizing biologically targeted clinical trials for neurofibromatosis. Expert Opin. Investig. Drugs 22, 443–462 (2013).
pubmed: 23425047
pmcid: 4009992
doi: 10.1517/13543784.2013.772979
Maertens, O. et al. A collaborative model for accelerating the discovery and translation of cancer therapies. Cancer Res. 77, 5706–5711 (2017).
pubmed: 28993414
pmcid: 5668167
doi: 10.1158/0008-5472.CAN-17-1789
Packer, R. J., Fisher, M. J., Cutter, G., Cole-Plourde, K. & Korf, B. R. Neurofibromatosis Cinical Trial Consortium. J. Child Neurol. 33, 82–91 (2018).
pubmed: 29246097
doi: 10.1177/0883073817739196
Plotkin, S. R. et al. Achieving consensus for clinical trials: the REiNS International Collaboration. Neurology 81, S1–S5 (2013).
pubmed: 24249801
pmcid: 3908338
doi: 10.1212/01.wnl.0000435743.49414.b6
Staser, K., Yang, F. C. & Clapp, D. W. Pathogenesis of plexiform neurofibroma: tumor-stromal/hematopoietic interactions in tumor progression. Annu. Rev. Pathol. 7, 469–495 (2012).
pubmed: 22077553
doi: 10.1146/annurev-pathol-011811-132441
Ferner, R. E. & Gutmann, D. H. Neurofibromatosis type 1 (NF1): diagnosis and management. Handb. Clin. Neurol. 115, 939–955 (2013).
pubmed: 23931823
doi: 10.1016/B978-0-444-52902-2.00053-9
Mautner, V. F. et al. Assessment of benign tumor burden by whole-body MRI in patients with neurofibromatosis 1. Neuro. Oncol. 10, 593–598 (2008).
pubmed: 18559970
pmcid: 2666233
doi: 10.1215/15228517-2008-011
Gross, A. M. et al. Association of plexiform neurofibroma volume changes and development of clinical morbidities in neurofibromatosis 1. Neuro. Oncol. 20, 1643–1651 (2018).
pubmed: 29718344
pmcid: 6231202
doi: 10.1093/neuonc/noy067
Evans, D. G. et al. Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J. Med. Genet. 39, 311–314 (2002).
pubmed: 12011145
pmcid: 1735122
doi: 10.1136/jmg.39.5.311
Ratner, N. & Miller, S. J. A RASopathy gene commonly mutated in cancer: the neurofibromatosis type 1 tumour suppressor. Nat. Rev. Cancer 15, 290–301 (2015).
pubmed: 25877329
pmcid: 4822336
doi: 10.1038/nrc3911
Wentworth, S. et al. Clinical experience with radiation therapy in the management of neurofibromatosis-associated central nervous system tumors. Int. J. Radiat. Oncol. Biol. Phys. 73, 208–213 (2009).
pubmed: 18687535
doi: 10.1016/j.ijrobp.2008.03.073
Greenberg, H. M. et al. Radiation therapy in the treatment of aggressive fibromatoses. Int. J. Radiat. Oncol. Biol. Phys. 7, 305–310 (1981).
pubmed: 6792167
doi: 10.1016/0360-3016(81)90102-4
Dombi, E. et al. Activity of selumetinib in neurofibromatosis type 1-related plexiform neurofibromas. N. Engl. J. Med. 375, 2550–2560 (2016).
pubmed: 28029918
pmcid: 5508592
doi: 10.1056/NEJMoa1605943
Gross, A. M. et al. Selumetinib in children with inoperable plexiform neurofibromas. N. Engl. J. Med. 382, 1430–1442 (2020).
pubmed: 32187457
pmcid: 7305659
doi: 10.1056/NEJMoa1912735
Yang, F. C. et al. Nf1-dependent tumors require a microenvironment containing Nf1
pubmed: 18984156
pmcid: 2788814
doi: 10.1016/j.cell.2008.08.041
Munchhof, A. M. et al. Neurofibroma-associated growth factors activate a distinct signaling network to alter the function of neurofibromin-deficient endothelial cells. Hum. Mol. Genet. 15, 1858–1869 (2006).
pubmed: 16648142
doi: 10.1093/hmg/ddl108
Robertson, K. A. et al. Imatinib mesylate for plexiform neurofibromas in patients with neurofibromatosis type 1: a phase 2 trial. Lancet Oncol. 13, 1218–1224 (2012).
pubmed: 23099009
pmcid: 5380388
doi: 10.1016/S1470-2045(12)70414-X
Rhodes, S. D. et al. Cdkn2a (Arf) loss drives NF1-associated atypical neurofibroma and malignant transformation. Hum. Mol. Genet. 28, 2752–2762 (2019).
Viola, D., Cappagli, V. & Elisei, R. Cabozantinib (XL184) for the treatment of locally advanced or metastatic progressive medullary thyroid cancer. Future Oncol. 9, 1083–1092 (2013).
pubmed: 23902240
doi: 10.2217/fon.13.128
Cabozantinib approved for renal cell carcinoma. Cancer Discov. 6, OF3 (2016).
Abou-Alfa, G. K. et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N. Engl. J. Med. 379, 54–63 (2018).
pubmed: 29972759
pmcid: 7523244
doi: 10.1056/NEJMoa1717002
Yakes, F. M. et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol. Cancer Ther. 10, 2298–2308 (2011).
pubmed: 21926191
doi: 10.1158/1535-7163.MCT-11-0264
Grullich, C. Cabozantinib: multi-kinase inhibitor of MET, AXL, RET, and VEGFR2. Recent Results Cancer Res. 211, 67–75 (2018).
pubmed: 30069760
doi: 10.1007/978-3-319-91442-8_5
Nguyen, L., Benrimoh, N., Xie, Y., Offman, E. & Lacy, S. Pharmacokinetics of cabozantinib tablet and capsule formulations in healthy adults. Anticancer Drugs 27, 669–678 (2016).
pubmed: 27139820
doi: 10.1097/CAD.0000000000000366
Armstrong, A. E. et al. Early administration of imatinib mesylate reduces plexiform neurofibroma tumor burden with durable results after drug discontinuation in a mouse model of neurofibromatosis type 1. Pediatr. Blood Cancer 67, e28372 (2020).
pubmed: 32459399
pmcid: 7516834
doi: 10.1002/pbc.28372
Bantscheff, M. et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat. Biotechnol. 25, 1035–1044 (2007).
pubmed: 17721511
doi: 10.1038/nbt1328
Duncan, J. S. et al. Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer. Cell 149, 307–321 (2012).
pubmed: 22500798
pmcid: 3328787
doi: 10.1016/j.cell.2012.02.053
Klaeger, S. et al. The target landscape of clinical kinase drugs. Science 358, eaan4368 (2017).
Schoumacher, M. & Burbridge, M. Key roles of AXL and MER receptor tyrosine kinases in resistance to multiple anticancer therapies. Curr. Oncol. Rep. 19, 19 (2017).
pubmed: 28251492
pmcid: 5332501
doi: 10.1007/s11912-017-0579-4
Dombi, E. et al. Recommendations for imaging tumor response in neurofibromatosis clinical trials. Neurology 81, S33–S40 (2013).
pubmed: 24249804
pmcid: 3908340
doi: 10.1212/01.wnl.0000435744.57038.af
Farrar, J. T., Portenoy, R. K., Berlin, J. A., Kinman, J. L. & Strom, B. L. Defining the clinically important difference in pain outcome measures. Pain 88, 287–294 (2000).
pubmed: 11068116
doi: 10.1016/S0304-3959(00)00339-0
Nutakki, K., Varni, J. W. & Swigonski, N. L. PedsQL Neurofibromatosis Type 1 Module for children, adolescents and young adults: feasibility, reliability, and validity. J. Neurooncol. 137, 337–347 (2018).
pubmed: 29273891
doi: 10.1007/s11060-017-2723-2
Pradhan, K. R. et al. Polychromatic flow cytometry identifies novel subsets of circulating cells with angiogenic potential in pediatric solid tumors. Cytometry B Clin. Cytom. 80, 335–338 (2011).
pubmed: 21567939
doi: 10.1002/cyto.b.20602
Jessen, W. J. et al. MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors. J. Clin. Invest. 123, 340–347 (2013).
pubmed: 23221341
doi: 10.1172/JCI60578
Wu, J. et al. Preclincial testing of sorafenib and RAD001 in the Nf
pubmed: 21319287
doi: 10.1002/pbc.23015
Ferguson, M. J. et al. Preclinical evidence for the use of sunitinib malate in the treatment of plexiform neurofibromas. Pediatr. Blood Cancer 63, 206–213 (2016).
pubmed: 26375012
doi: 10.1002/pbc.25763
Gay, C. M., Balaji, K. & Byers, L. A. Giving AXL the axe: targeting AXL in human malignancy. Br. J. Cancer 116, 415–423 (2017).
pubmed: 28072762
pmcid: 5318970
doi: 10.1038/bjc.2016.428
Weiss, B. et al. Sirolimus for progressive neurofibromatosis type 1-associated plexiform neurofibromas: a neurofibromatosis Clinical Trials Consortium phase II study. Neuro. Oncol. 17, 596–603 (2015).
pubmed: 25314964
doi: 10.1093/neuonc/nou235
Jakacki, R. I. et al. Phase II trial of pegylated interferon alfa-2b in young patients with neurofibromatosis type 1 and unresectable plexiform neurofibromas. Neuro. Oncol. 19, 289–297 (2017).
pubmed: 27510726
Dombi, E. et al. NF1 plexiform neurofibroma growth rate by volumetric MRI: relationship to age and body weight. Neurology 68, 643–647 (2007).
pubmed: 17215493
doi: 10.1212/01.wnl.0000250332.89420.e6
Lock, R. et al. Cotargeting MNK and MEK kinases induces the regression of NF1-mutant cancers. J. Clin. Invest. 126, 2181–2190 (2016).
pubmed: 27159396
pmcid: 4887164
doi: 10.1172/JCI85183
Choueiri, T. K. et al. Cabozantinib versus sunitinib as initial targeted therapy for patients with metastatic renal cell carcinoma of poor or intermediate risk: the alliance A031203 CABOSUN trial. J. Clin. Oncol. 35, 591–597 (2017).
pubmed: 28199818
doi: 10.1200/JCO.2016.70.7398
Cabanillas, M. E. et al. Cabozantinib as salvage therapy for patients with tyrosine kinase inhibitor-refractory differentiated thyroid cancer: results of a multicenter phase II international thyroid oncology group trial. J. Clin. Oncol. 35, 3315–3321 (2017).
pubmed: 28817373
pmcid: 5652872
doi: 10.1200/JCO.2017.73.0226
Tolaney, S. M. et al. Phase II and biomarker study of cabozantinib in metastatic triple-negative breast cancer patients. Oncologist 22, 25–32 (2017).
pubmed: 27789775
pmcid: 5313267
doi: 10.1634/theoncologist.2016-0229
Yavuz, S. et al. Cabozantinib-induced thyroid dysfunction: a review of two ongoing trials for metastatic bladder cancer and sarcoma. Thyroid 24, 1223–1231 (2014).
pubmed: 24724719
pmcid: 4106376
doi: 10.1089/thy.2013.0621
Jousma, E. et al. Preclinical assessments of the MEK inhibitor PD-0325901 in a mouse model of neurofibromatosis type 1. Pediatr. Blood Cancer 62, 1709–1716 (2015).
pubmed: 25907661
pmcid: 4546559
doi: 10.1002/pbc.25546
Leibowitz-Amit, R. et al. Changes in plasma biomarkers following treatment with cabozantinib in metastatic castration-resistant prostate cancer: a post hoc analysis of an extension cohort of a phase II trial. J. Transl. Med. 14, 12 (2016).
pubmed: 26762579
pmcid: 4712499
doi: 10.1186/s12967-015-0747-y
Solomon, J., Warren, K., Dombi, E., Patronas, N. & Widemann, B. Automated detection and volume measurement of plexiform neurofibromas in neurofibromatosis 1 using magnetic resonance imaging. Comput. Med. Imaging Graph. 28, 257–265 (2004).
pubmed: 15249071
doi: 10.1016/j.compmedimag.2004.03.002
Downie, W. W. et al. Studies with pain rating scales. Ann. Rheum. Dis. 37, 378–381 (1978).
pubmed: 686873
pmcid: 1000250
doi: 10.1136/ard.37.4.378
Cleeland, C. S. & Ryan, K. M. Pain assessment: global use of the Brief Pain Inventory. Ann. Acad. Med. Singap. 23, 129–138 (1994).
pubmed: 8080219
Estes, M. L., Mund, J. A., Ingram, D. A. & Case, J. Identification of endothelial cells and progenitor cell subsets in human peripheral blood. Curr. Protoc. Cytom. 52, 9.33.1–9.33.11 (2010).
Simon, R. Optimal two-stage designs for phase II clinical trials. Control. Clin. Trials 10, 1–10 (1989).
pubmed: 2702835
doi: 10.1016/0197-2456(89)90015-9