Generation of a new immortalized human lung pericyte cell line: a promising tool for human lung pericyte studies.
Journal
Laboratory investigation; a journal of technical methods and pathology
ISSN: 1530-0307
Titre abrégé: Lab Invest
Pays: United States
ID NLM: 0376617
Informations de publication
Date de publication:
05 2021
05 2021
Historique:
received:
08
07
2020
accepted:
30
11
2020
revised:
27
11
2020
pubmed:
16
1
2021
medline:
4
8
2021
entrez:
15
1
2021
Statut:
ppublish
Résumé
Pericytes apposed to the capillary endothelium are known to stabilize and promote endothelial integrity. Recent studies indicate that lung pericytes play a prominent role in lung physiology, and they are involved in the development of various lung diseases including lung injury in sepsis, pulmonary fibrosis, asthma, and pulmonary hypertension. Accordingly, human lung pericyte studies are important for understanding the mechanistic basis of lung physiology and pathophysiology; however, human lung pericytes can only be cultured for a few passages and no immortalized human lung pericyte cell line has been established so far. Thus, our study aims to establish an immortalized human lung pericyte cell line. Developed using SV40 large T antigen lentivirus, immortalized pericytes exhibit stable SV40T expression, sustained proliferation, and have significantly higher telomerase activity compared to normal human lung pericytes. In addition, these cells retained pericyte characteristics, marked by similar morphology, and expression of pericyte cell surface markers such as PDGFRβ, NG2, CD44, CD146, CD90, and CD73. Furthermore, similar to that of primary pericytes, immortalized pericytes promoted endothelial cell tube formation and responded to different stimuli. Our previous data showed that friend leukemia virus integration 1 (Fli-1), a member of the ETS transcription factor family, is a key regulator that modulates inflammatory responses in mouse lung pericytes. We further demonstrated that Fli-1 regulates inflammatory responses in immortalized human lung pericytes. To summarize, we successfully established an immortalized human lung pericyte cell line, which serves as a promising tool for in vitro pericyte studies to understand human lung pericyte physiology and pathophysiology.
Identifiants
pubmed: 33446892
doi: 10.1038/s41374-020-00524-y
pii: S0023-6837(22)00641-9
pmc: PMC8068576
mid: NIHMS1651669
doi:
pii:
Substances chimiques
FLII protein, human
0
Microfilament Proteins
0
Trans-Activators
0
Types de publication
Evaluation Study
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
625-635Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM130653
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM113995
Pays : United States
Organisme : NHLBI NIH HHS
ID : K23 HL135263
Pays : United States
Organisme : NIAID NIH HHS
ID : R41 AI157378
Pays : United States
Organisme : NCATS NIH HHS
ID : TL1 TR001451
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR001450
Pays : United States
Références
Attwell D, Mishra A, Hall CN, O’Farrell FM, Dalkara T. What is a pericyte? J Cereb Blood Flow Metab. 2016;36:451–5.
doi: 10.1177/0271678X15610340
Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res. 2005;97:512–23.
doi: 10.1161/01.RES.0000182903.16652.d7
Armulik A, Genove G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21:193–215.
doi: 10.1016/j.devcel.2011.07.001
Shammout B, Johnson JR. Pericytes in chronic lung disease. Adv Exp Med Biol. 2019;1147:299–317.
doi: 10.1007/978-3-030-16908-4_14
Bichsel CA, Hall SR, Schmid RA, Guenat TO, Geiser T. Primary human lung pericytes support and stabilize in vitro perfusable microvessels. Tissue Eng Part A. 2015;21:2166–76.
doi: 10.1089/ten.tea.2014.0545
Evdokiou A, Kanisicak O, Gierek S, Barry A, Ivey JM, Zhang X, et al. Characterization of burn eschar pericytes. J Clin Med. 2020;9:606.
doi: 10.3390/jcm9020606
Wilson CL, Stephenson SE, Higuero JP, Bostwick FC, Hung FC, Schnapp ML. Characterization of human PDGFR-beta-positive pericytes from IPF and non-IPF lungs. Am J Physiol Lung Cell Mol Physiol. 2018;315:L991–1002.
doi: 10.1152/ajplung.00289.2018
Kottke MA, Walters TJ. Where’s the leak in vascular barriers? A review. Shock. 2016;46:20–36.
doi: 10.1097/SHK.0000000000000666
Dominguez E, Raoul W, Calippe B, Sahel AJ, Guillonneau X, Paques M, et al. Experimental branch retinal vein occlusion induces upstream pericyte loss and vascular destabilization. PLoS One. 2015;10:e0132644.
doi: 10.1371/journal.pone.0132644
Nakazato R, Kawabe K, Yamada D, Ikeno S, Mieda M, Shimba S, et al. Disruption of Bmal1 impairs blood-brain barrier integrity via pericyte dysfunction. J Neurosci. 2017;37:10052–62.
doi: 10.1523/JNEUROSCI.3639-16.2017
Armulik A, Genove G, Mae M, Nisancioglu HM, Wallgard E, Niaudet C, et al. Pericytes regulate the blood-brain barrier. Nature. 2010;468:557–61.
doi: 10.1038/nature09522
Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci. 2011;12:723–38.
doi: 10.1038/nrn3114
Van DH HJ, Jansen JFA, Van MJP, Buchem VAM, Muller M, Wong MS, et al. Neurovascular unit impairment in early Alzheimer’s disease measured with magnetic resonance imaging. Neurobiol Aging. 2016;45:190–6.
doi: 10.1016/j.neurobiolaging.2016.06.006
Ziegler T, Horstkotte J, Schwab C, Pfetsch V, Weinmann K, Dietzel S, et al. Angiopoietin 2 mediates microvascular and hemodynamic alterations in sepsis. J Clin Invest. 2013;123:3436–344.
doi: 10.1172/JCI66549
Zeng H, He X, Tuo QH, Liao FD, Zhang QG, Chen XJ. LPS causes pericyte loss and microvascular dysfunction via disruption of Sirt3/angiopoietins/Tie-2 and HIF-2alpha/Notch3 pathways. Sci Rep. 2016;6:20931.
doi: 10.1038/srep20931
Hung CF, Wilson CL, Schnapp LM. Pericytes in the lung. Adv Exp Med Biol. 2019;1122:41–58.
doi: 10.1007/978-3-030-11093-2_3
Sun Y, Sun W, Yang N, Liu J, Tang HI, Li FZ, et al. The effect of core fucosylation-mediated regulation of multiple signaling pathways on lung pericyte activation and fibrosis. Int J Biochem Cell Biol. 2019;117:105639.
doi: 10.1016/j.biocel.2019.105639
Johnson JR, Folestad E, Rowley JE, Noll ME, Walker AS, Lloyd MC, et al. Pericytes contribute to airway remodeling in a mouse model of chronic allergic asthma. Am J Physiol Lung Cell Mol Physiol. 2015;308:L658–71.
doi: 10.1152/ajplung.00286.2014
Yuan K, Shamskhou EA, Orcholski ME, Nathan A, Reddy S, Honda H, et al. Loss of endothelium-derived Wnt5a is associated with reduced pericyte recruitment and small vessel loss in pulmonary arterial hypertension. Circulation. 2019;139:1710–24.
doi: 10.1161/CIRCULATIONAHA.118.037642
Li P, Zhou Y, Goodwin AJ, Cook AJ, Halushka VP, Zhang KX, et al. Fli-1 governs pericyte dysfunction in a murine model of sepsis. J Infect Dis. 2018;218:1995–2005.
doi: 10.1093/infdis/jiy451
Umehara K, Sun Y, Hiura S, Hamada K, Itoh M, Kitamura K, et al. A new conditionally immortalized human fetal brain pericyte cell line: establishment and functional characterization as a promising tool for human brain pericyte studies. Mol Neurobiol. 2018;55:5993–6006.
doi: 10.1007/s12035-017-0815-9
Berrone E, Beltramo E, Buttiglieri S, Tarallo S, Rosso A, Hammes PH, et al. Establishment and characterization of a human retinal pericyte line: a novel tool for the study of diabetic retinopathy. Int J Mol Med. 2009;23:373–8.
pubmed: 19212656
Campisi J. Cancer, aging and cellular senescence. In Vivo. 2000;14:183–8.
pubmed: 10757076
Mitani A, Kobayashi T, Hayashi Y, Matsushita N, Matsushita S, Nakao S, et al. Characterization of doxycycline-dependent inducible Simian Virus 40 large T antigen immortalized human conjunctival epithelial cell line. PLoS One. 2019;14:e0222454.
doi: 10.1371/journal.pone.0222454
Klein D, Weisshardt P, Kleff V, Jastrow H, Jakob JH, Ergün S. Vascular wall-resident CD44+ multipotent stem cells give rise to pericytes and smooth muscle cells and contribute to new vessel maturation. PLoS One. 2011;6:e20540.
doi: 10.1371/journal.pone.0020540
Hung CF, Mittelsteadt KL, Brauer R, McKinney LB, Hallstrand ST, Parks CW, et al. Lung pericyte-like cells are functional interstitial immune sentinel cells. Am J Physiol Lung Cell Mol Physiol. 2017;312:L556–67.
doi: 10.1152/ajplung.00349.2016
Edelman DA, Jiang Y, Tyburski JG, Wilson FR, Steffes PC. Lipopolysaccharide up-regulates heat shock protein expression in rat lung pericytes. J Surg Res. 2007;140:171–6.
doi: 10.1016/j.jss.2006.12.560
Li P, Goodwin AJ, Cook JA, Halushka VP, Zhang XK, Fan HK. Fli-1 transcription factor regulates the expression of caspase-1 in lung pericytes. Mol Immunol. 2019;108:1–7.
doi: 10.1016/j.molimm.2019.02.003
Wu Y, Li P, Goodwin AJ, Cook JA, Halushka VP, Zingarelli B, et al. miR-145a regulates pericyte dysfunction in a murine model of sepsis. J Infect Dis. 2020;222:1037–45.
doi: 10.1093/infdis/jiaa184
Edelman DA, Jiang Y, Tyburski JG, Wilson FR, Steffes PC. Cytokine production in lipopolysaccharide-exposed rat lung pericytes. J Trauma. 2007;62:89–93.
doi: 10.1097/TA.0b013e31802dd712
Kim CO, Huh AJ, Kim MS, Chin BS, Han SH, Choi SH, et al. LPS-induced vascular endothelial growth factor expression in rat lung pericytes. Shock. 2008;30:92–97.
doi: 10.1097/SHK.0b013e31815d19ad