SARS-CoV-2 infection susceptibility influenced by ACE2 genetic polymorphisms: insights from Tehran Cardio-Metabolic Genetic Study.
Angiotensin-Converting Enzyme 2
/ chemistry
Binding Sites
COVID-19
/ genetics
Disease Susceptibility
Gene Expression
Genotype
Humans
INDEL Mutation
Iran
Molecular Docking Simulation
Mutation, Missense
Polymorphism, Single Nucleotide
Protein Binding
Protein Structure, Tertiary
SARS-CoV-2
/ isolation & purification
Serine Endopeptidases
/ chemistry
Spike Glycoprotein, Coronavirus
/ chemistry
Whole Genome Sequencing
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
15 01 2021
15 01 2021
Historique:
received:
01
08
2020
accepted:
16
12
2020
entrez:
16
1
2021
pubmed:
17
1
2021
medline:
29
1
2021
Statut:
epublish
Résumé
The genetic variations among individuals are one of the notable factors determining disease severity and drug response. Nowadays, COVID-19 pandemic has been adversely affecting many aspects of human life. We used the Tehran Cardio-Metabolic Genetic Study (TCGS) data that is an ongoing genetic study including the whole-genome sequencing of 1200 individuals and chip genotyping of more than 15,000 participants. Here, the effect of ACE2 variations by focusing on the receptor-binding site of SARS-CoV-2 and ACE2 cleavage by TMPRSS2 protease were investigated through simulations study. After analyzing TCGS data, 570 genetic variations on the ACE2 gene, including single nucleotide polymorphisms (SNP) and insertion/deletion (INDEL) were detected. Interestingly, two observed missense variants, K26R and S331F, which only the first one was previously reported, can reduce the receptor affinity for the viral Spike protein. Moreover, our bioinformatics simulation of 3D structures and docking of proteins explains important details of ACE2-Spike and ACE2-TMPRSS2 interactions, especially the critical role of Arg652 of ACE2 for protease function of TMPRSS2 was uncovered. As our results show that the genetic variation of ACE2 can at least influence the affinity of this receptor to its partners, we need to consider the genetic variations on ACE2 as well as other genes in the pathways that contribute to the pathogenesis of COVID-19 for designing efficient drugs and vaccines.
Identifiants
pubmed: 33452303
doi: 10.1038/s41598-020-80325-x
pii: 10.1038/s41598-020-80325-x
pmc: PMC7810897
doi:
Substances chimiques
Spike Glycoprotein, Coronavirus
0
ACE2 protein, human
EC 3.4.17.23
Angiotensin-Converting Enzyme 2
EC 3.4.17.23
Serine Endopeptidases
EC 3.4.21.-
TMPRSS2 protein, human
EC 3.4.21.-
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1529Références
Am J Physiol Lung Cell Mol Physiol. 2015 Jun 15;308(12):L1189-201
pubmed: 25888573
Cell. 2020 Apr 16;181(2):281-292.e6
pubmed: 32155444
Aging Cell. 2020 Jul;19(7):
pubmed: 32558150
J Virol. 2020 Mar 17;94(7):
pubmed: 31996437
J Mol Biol. 2016 Feb 22;428(4):720-725
pubmed: 26410586
Amino Acids. 2008 Aug;35(2):375-82
pubmed: 18235997
PLoS One. 2014 Jan 15;9(1):e85958
pubmed: 24454948
Biochem Biophys Res Commun. 2020 Feb 17;:
pubmed: 32081428
J Mol Biol. 1990 Oct 5;215(3):403-10
pubmed: 2231712
J Comput Chem. 2005 Dec;26(16):1701-18
pubmed: 16211538
Science. 2020 Mar 13;367(6483):1260-1263
pubmed: 32075877
Bioinformatics. 2009 Jul 15;25(14):1754-60
pubmed: 19451168
J Virol. 2014 Jan;88(2):1293-307
pubmed: 24227843
JMIR Res Protoc. 2017 Feb 23;6(2):e28
pubmed: 28232301
J Comput Chem. 2004 Oct;25(13):1605-12
pubmed: 15264254
Cell Discov. 2020 Feb 24;6:11
pubmed: 32133153
J Mol Biol. 1993 Dec 5;234(3):779-815
pubmed: 8254673
Nucleic Acids Res. 2018 Mar 16;46(5):2699
pubmed: 29425356
Cell Mol Life Sci. 2005 Oct;62(19-20):2161-72
pubmed: 16003488
Nat Med. 2020 Apr;26(4):450-452
pubmed: 32284615
Genome Biol. 2016 Jun 06;17(1):122
pubmed: 27268795
Clin Pharmacol Ther. 2008 Jun;83(6):815-7
pubmed: 18043684
J Phys Chem B. 2020 Aug 20;124(33):7128-7137
pubmed: 32559081
Nucleic Acids Res. 2009 Jan;37(Database issue):D5-15
pubmed: 18940862
Trials. 2009 Jan 25;10:5
pubmed: 19166627
Nucleic Acids Res. 2000 Jan 1;28(1):235-42
pubmed: 10592235
Hum Mutat. 2019 Nov;40(11):1968-1984
pubmed: 31343797
EMBO J. 2005 Apr 20;24(8):1634-43
pubmed: 15791205
Nucleic Acids Res. 2005 Jan 1;33(Database issue):D501-4
pubmed: 15608248
Biochimie. 2017 Nov;142:1-10
pubmed: 28778717
Adv Virus Res. 2016;96:29-57
pubmed: 27712627
Nature. 2017 Oct 11;550(7675):204-213
pubmed: 29022597
Cancer Res. 2001 Feb 15;61(4):1686-92
pubmed: 11245484
Science. 2005 Sep 16;309(5742):1864-8
pubmed: 16166518
Nature. 2015 Oct 1;526(7571):68-74
pubmed: 26432245
Science. 2020 Mar 27;367(6485):1444-1448
pubmed: 32132184
EMBO J. 2020 May 18;39(10):e105114
pubmed: 32246845
Am J Public Health. 2004 Nov;94(11):1952-8
pubmed: 15514236
Protein Eng. 1995 Feb;8(2):127-34
pubmed: 7630882
Nucleic Acids Res. 2015 Jan;43(Database issue):D204-12
pubmed: 25348405
Nat Rev Genet. 2007 Dec;8(12):
pubmed: 19066603
Nat Med. 2005 Aug;11(8):875-9
pubmed: 16007097
Clin Chim Acta. 2020 Jun;505:192-193
pubmed: 32220422
Lancet Respir Med. 2020 Apr;8(4):e21
pubmed: 32171062
Biochem Soc Trans. 1996 Feb;24(1):274-9
pubmed: 8674685
Biochimie. 2020 Jul;174:30-33
pubmed: 32305506
Cell. 2020 Apr 16;181(2):271-280.e8
pubmed: 32142651
Bioinformatics. 2011 Feb 1;27(3):343-50
pubmed: 21134891
Nat Protoc. 2010 May;5(5):883-97
pubmed: 20431534
Hippocampus. 2004;14(5):539-56
pubmed: 15301433
Aging (Albany NY). 2020 Jun 5;12(11):10087-10098
pubmed: 32501810