Medulloblastoma-associated mutations in the DEAD-box RNA helicase DDX3X/DED1 cause specific defects in translation.
5' Untranslated Regions
Adenosine Triphosphatases
/ genetics
Amino Acid Substitution
Cerebellar Neoplasms
/ genetics
Conserved Sequence
DEAD-box RNA Helicases
/ genetics
Genes, Reporter
Green Fluorescent Proteins
/ genetics
Humans
Luminescent Proteins
/ genetics
Medulloblastoma
/ genetics
Mutagenesis, Site-Directed
Mutation
Phenotype
Protein Binding
Protein Biosynthesis
RNA
/ genetics
Recombinant Proteins
/ genetics
Saccharomyces cerevisiae
/ genetics
Saccharomyces cerevisiae Proteins
/ genetics
Red Fluorescent Protein
DEAD-box protein
RNA helicase
Saccharomyces cerevisiae
cancer
medulloblastoma
start site scanning
stress granule
translation initiation
translation regulation
Journal
The Journal of biological chemistry
ISSN: 1083-351X
Titre abrégé: J Biol Chem
Pays: United States
ID NLM: 2985121R
Informations de publication
Date de publication:
Historique:
received:
03
09
2020
revised:
05
01
2021
accepted:
12
01
2021
pubmed:
19
1
2021
medline:
1
9
2021
entrez:
18
1
2021
Statut:
ppublish
Résumé
Medulloblastoma is the most common pediatric brain cancer, and sequencing studies identified frequent mutations in DDX3X, a DEAD-box RNA helicase primarily implicated in translation. Forty-two different sites were identified, suggesting that the functional effects of the mutations are complex. To investigate how these mutations are affecting DDX3X cellular function, we constructed a full set of equivalent mutant alleles in DED1, the Saccharomyces cerevisiae ortholog of DDX3X, and characterized their effects in vivo and in vitro. Most of the medulloblastoma-associated mutants in DDX3X/DED1 (ded1-mam) showed substantial growth defects, indicating that functional effects are conserved in yeast. Further, while translation was affected in some mutants, translation defects affecting bulk mRNA were neither consistent nor correlated with the growth phenotypes. Likewise, increased formation of stress granules in ded1-mam mutants was common but did not correspond to the severity of the mutants' growth defects. In contrast, defects in translating mRNAs containing secondary structure in their 5' untranslated regions (UTRs) were found in almost all ded1-mam mutants and correlated well with growth phenotypes. We thus conclude that these specific translation defects, rather than generalized effects on translation, are responsible for the observed cellular phenotypes and likely contribute to DDX3X-mutant medulloblastoma. Examination of ATPase activity and RNA binding of recombinant mutant proteins also did not reveal a consistent defect, indicating that the translation defects are derived from multiple enzymatic deficiencies. This work suggests that future studies into medulloblastoma pathology should focus on this specific translation defect, while taking into account the wide spectrum of DDX3X mutations.
Identifiants
pubmed: 33460649
pii: S0021-9258(21)00065-X
doi: 10.1016/j.jbc.2021.100296
pmc: PMC7949108
pii:
doi:
Substances chimiques
5' Untranslated Regions
0
Luminescent Proteins
0
Recombinant Proteins
0
Saccharomyces cerevisiae Proteins
0
Green Fluorescent Proteins
147336-22-9
RNA
63231-63-0
Adenosine Triphosphatases
EC 3.6.1.-
DDX3X protein, human
EC 3.6.1.-
DED1 protein, S cerevisiae
EC 3.6.1.-
DEAD-box RNA Helicases
EC 3.6.4.13
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
100296Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM136827
Pays : United States
Informations de copyright
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
Déclaration de conflit d'intérêts
Conflict of interest The authors declare that they have no conflicts of interest with the contents of this article.
Références
Oncotarget. 2016 May 10;7(19):28169-82
pubmed: 27058758
Br J Pharmacol. 2019 Dec;176(23):4421-4433
pubmed: 31301065
Ann Clin Transl Neurol. 2018 Sep 15;5(10):1277-1285
pubmed: 30349862
J Clin Oncol. 2001 Aug 1;19(15):3470-6
pubmed: 11481352
Cancer Cell. 2014 Mar 17;25(3):393-405
pubmed: 24651015
Mol Biol Cell. 2008 Sep;19(9):3847-58
pubmed: 18596238
Mol Microbiol. 2004 Feb;51(4):987-1001
pubmed: 14763975
Biochim Biophys Acta. 2015 Jul;1849(7):861-70
pubmed: 25482014
Childs Nerv Syst. 2015 Oct;31(10):1869-75
pubmed: 26351236
Nature. 2018 Jul;559(7712):130-134
pubmed: 29950728
Cell. 2004 Jul 9;118(1):31-44
pubmed: 15242642
J Biol Chem. 2010 May 28;285(22):16683-92
pubmed: 20371601
Nat Genet. 2015 Sep;47(9):1061-6
pubmed: 26192917
Mol Cell. 2009 Dec 25;36(6):932-41
pubmed: 20064460
Science. 1997 Mar 7;275(5305):1468-71
pubmed: 9045610
Curr Opin Cell Biol. 2017 Apr;45:102-109
pubmed: 28582681
Mol Biol Cell. 2008 Mar;19(3):984-93
pubmed: 18162578
Cell. 2020 May 14;181(4):818-831.e19
pubmed: 32359423
Nat Rev Cancer. 2012 Dec;12(12):818-34
pubmed: 23175120
Mol Cell Biol. 2017 Oct 13;37(21):
pubmed: 28784717
Science. 2009 Apr 10;324(5924):218-23
pubmed: 19213877
Sci Rep. 2016 May 16;6:25996
pubmed: 27180681
EMBO J. 2012 Sep 12;31(18):3745-56
pubmed: 22872150
Crit Rev Biochem Mol Biol. 2014 Jul-Aug;49(4):343-60
pubmed: 25039764
Nature. 2012 Aug 2;488(7409):100-5
pubmed: 22832583
J Biol Chem. 2016 Jan 29;291(5):2412-21
pubmed: 26598523
Oncotarget. 2018 Jul 10;9(53):30189-30198
pubmed: 30046397
J Mol Biol. 2017 Nov 24;429(23):3730-3742
pubmed: 29037760
Mol Cell. 2011 Sep 16;43(6):962-72
pubmed: 21925384
Neuropsychology. 2008 Mar;22(2):159-68
pubmed: 18331158
Nature. 2012 Aug 2;488(7409):43-8
pubmed: 22722829
Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20209-14
pubmed: 19088201
Biochem J. 2012 Jan 1;441(1):119-29
pubmed: 21883093
Surg Pathol Clin. 2020 Jun;13(2):235-247
pubmed: 32389264
Philos Trans R Soc Lond B Biol Sci. 2017 Mar 19;372(1716):
pubmed: 28138072
Elife. 2018 Oct 03;7:
pubmed: 30281017
Acta Neuropathol. 2012 Apr;123(4):465-72
pubmed: 22134537
Genome Res. 2015 Aug;25(8):1196-205
pubmed: 26122911
Neuron. 2020 May 6;106(3):404-420.e8
pubmed: 32135084
Cold Spring Harb Perspect Biol. 2019 Jul 1;11(7):
pubmed: 29959193
J Mol Biol. 2015 May 8;427(9):1779-1796
pubmed: 25724843
Am J Hum Genet. 2015 Aug 6;97(2):343-52
pubmed: 26235985
Nat Rev Mol Cell Biol. 2011 Jul 22;12(8):505-16
pubmed: 21779027
Elife. 2020 May 29;9:
pubmed: 32469309
Int J Mol Sci. 2020 Jun 20;21(12):
pubmed: 32575790
Nature. 2012 Aug 2;488(7409):106-10
pubmed: 22820256
Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17394-9
pubmed: 23045643
Mol Biol Cell. 2019 Aug 1;30(17):2171-2184
pubmed: 31141444
Nature. 2019 Sep;573(7772):144-148
pubmed: 31435012
Nucleic Acids Res. 2008 Aug;36(14):4708-18
pubmed: 18628297
J Biol Chem. 2011 Nov 18;286(46):39750-9
pubmed: 21949122
Trends Cell Biol. 2016 Sep;26(9):668-679
pubmed: 27289443
Oncogene. 2008 Jan 24;27(5):700-14
pubmed: 17667941
Science. 2013 Mar 22;339(6126):1436-41
pubmed: 23413191
J Biol Chem. 1999 Jun 18;274(25):17677-83
pubmed: 10364207