Impaired complex I repair causes recessive Leber's hereditary optic neuropathy.
Adolescent
Adult
Cell Line
Child, Preschool
Electron Transport Complex I
/ chemistry
Female
Gene Knockout Techniques
Genes, Recessive
HSP40 Heat-Shock Proteins
/ deficiency
Homozygote
Humans
Male
Middle Aged
Mutation
Optic Atrophy, Hereditary, Leber
/ genetics
Pedigree
Penetrance
Phenotype
Protein Subunits
Reactive Oxygen Species
/ metabolism
Young Adult
Genetic diseases
Genetics
Neuroscience
Journal
The Journal of clinical investigation
ISSN: 1558-8238
Titre abrégé: J Clin Invest
Pays: United States
ID NLM: 7802877
Informations de publication
Date de publication:
15 03 2021
15 03 2021
Historique:
received:
19
03
2020
accepted:
14
01
2021
pubmed:
20
1
2021
medline:
30
9
2021
entrez:
19
1
2021
Statut:
ppublish
Résumé
Leber's hereditary optic neuropathy (LHON) is the most frequent mitochondrial disease and was the first to be genetically defined by a point mutation in mitochondrial DNA (mtDNA). A molecular diagnosis is achieved in up to 95% of cases, the vast majority of which are accounted for by 3 mutations within mitochondrial complex I subunit-encoding genes in the mtDNA (mtLHON). Here, we resolve the enigma of LHON in the absence of pathogenic mtDNA mutations. We describe biallelic mutations in a nuclear encoded gene, DNAJC30, in 33 unsolved patients from 29 families and establish an autosomal recessive mode of inheritance for LHON (arLHON), which to date has been a prime example of a maternally inherited disorder. Remarkably, all hallmarks of mtLHON were recapitulated, including incomplete penetrance, male predominance, and significant idebenone responsivity. Moreover, by tracking protein turnover in patient-derived cell lines and a DNAJC30-knockout cellular model, we measured reduced turnover of specific complex I N-module subunits and a resultant impairment of complex I function. These results demonstrate that DNAJC30 is a chaperone protein needed for the efficient exchange of complex I subunits exposed to reactive oxygen species and integral to a mitochondrial complex I repair mechanism, thereby providing the first example to our knowledge of a disease resulting from impaired exchange of assembled respiratory chain subunits.
Identifiants
pubmed: 33465056
pii: 138267
doi: 10.1172/JCI138267
pmc: PMC7954600
doi:
pii:
Substances chimiques
Dnajc30 protein, mouse
0
HSP40 Heat-Shock Proteins
0
Protein Subunits
0
Reactive Oxygen Species
0
Electron Transport Complex I
EC 7.1.1.2
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Department of Health
Pays : United Kingdom
Commentaires et corrections
Type : CommentIn
Références
Am J Hum Genet. 2003 Feb;72(2):333-9
pubmed: 12518276
Annu Rev Biochem. 2006;75:69-92
pubmed: 16756485
Nat Rev Mol Cell Biol. 2010 Aug;11(8):579-92
pubmed: 20651708
Nucleic Acids Res. 2015 Jul 1;43(W1):W160-8
pubmed: 25956654
Arch Neurol. 2007 Jun;64(6):890-3
pubmed: 17562939
J Clin Invest. 2020 Jan 2;130(1):108-125
pubmed: 31550240
PLoS One. 2012;7(8):e42242
pubmed: 22879922
Nucleic Acids Res. 2019 Jan 8;47(D1):D442-D450
pubmed: 30395289
Nat Struct Mol Biol. 2018 Jul;25(7):548-556
pubmed: 29915388
Am J Hum Genet. 1991 Nov;49(5):939-50
pubmed: 1928099
J Inherit Metab Dis. 2006 Aug;29(4):499-515
pubmed: 16838076
eNeurologicalSci. 2019 Jan 11;14:74-76
pubmed: 30705974
Prog Retin Eye Res. 2004 Jan;23(1):53-89
pubmed: 14766317
Eur J Hum Genet. 2005 May;13(5):623-7
pubmed: 15657614
Science. 1988 Dec 9;242(4884):1427-30
pubmed: 3201231
Brain. 2009 Apr;132(Pt 4):833-42
pubmed: 19336460
Cell Cycle. 2011 May 15;10(10):1528-32
pubmed: 21471732
Brain. 2011 Sep;134(Pt 9):e188
pubmed: 21810891
Adv Exp Med Biol. 2012;748:145-69
pubmed: 22729857
Trends Cell Biol. 2018 Oct;28(10):835-867
pubmed: 30055843
Mol Genet Metab. 2011 Jun;103(2):153-60
pubmed: 21414825
Ophthalmology. 1996 Mar;103(3):504-14
pubmed: 8600429
J Neuroophthalmol. 2000 Sep;20(3):166-70
pubmed: 11001192
Nat Commun. 2020 Apr 2;11(1):1643
pubmed: 32242014
Acta Neuropathol. 2016 Dec;132(6):789-806
pubmed: 27696015
Brain. 2011 Sep;134(Pt 9):2677-86
pubmed: 21788663
J Biol Chem. 2020 Feb 28;295(9):2544-2554
pubmed: 31974161
Annu Rev Biochem. 2013;82:551-75
pubmed: 23527692
Cell. 2015 Jul 16;162(2):425-440
pubmed: 26186194
Ann Neurol. 1999 Dec;46(6):916-9
pubmed: 10589546
Prog Retin Eye Res. 2011 Mar;30(2):81-114
pubmed: 21112411
J Med Genet. 2017 May;54(5):346-356
pubmed: 28031252
Cell. 2018 Nov 1;175(4):1088-1104.e23
pubmed: 30318146
Cell Metab. 2017 Apr 4;25(4):765-776
pubmed: 28380371
Front Oncol. 2017 Jun 08;7:118
pubmed: 28642839
Methods Mol Biol. 2017;1567:391-406
pubmed: 28276032
Biochim Biophys Acta. 2016 Jul;1857(7):872-83
pubmed: 26721206
Am J Hum Genet. 2012 May 4;90(5):915-24
pubmed: 22560092
Orphanet J Rare Dis. 2014 Oct 23;9:158
pubmed: 25338955
Am J Hum Genet. 1996 Aug;59(2):481-5
pubmed: 8755941
Nature. 2017 May 25;545(7655):505-509
pubmed: 28514442
Am J Hum Genet. 1972 May;24(3):348-9
pubmed: 5063796
J Neuroophthalmol. 2020 Dec;40(4):558-565
pubmed: 32991388
Am J Hum Genet. 2007 Aug;81(2):228-33
pubmed: 17668373
Nat Commun. 2017 Jun 12;8:15824
pubmed: 28604674
Invest Ophthalmol Vis Sci. 2016 Mar;57(3):1370-5
pubmed: 27007794
Cell Metab. 2017 Jan 10;25(1):128-139
pubmed: 27720676
Nat Protoc. 2006;1(1):418-28
pubmed: 17406264