Crystal structure of l-rhamnose 1-dehydrogenase involved in the nonphosphorylative pathway of l-rhamnose metabolism in bacteria.


Journal

FEBS letters
ISSN: 1873-3468
Titre abrégé: FEBS Lett
Pays: England
ID NLM: 0155157

Informations de publication

Date de publication:
03 2021
Historique:
received: 12 12 2020
revised: 18 01 2021
accepted: 19 01 2021
pubmed: 23 1 2021
medline: 29 7 2021
entrez: 22 1 2021
Statut: ppublish

Résumé

Several microorganisms can utilize l-rhamnose as a carbon and energy source through the nonphosphorylative metabolic pathway, in which l-rhamnose 1-dehydrogenase (RhaDH) catalyzes the NAD(P)

Identifiants

pubmed: 33482017
doi: 10.1002/1873-3468.14046
doi:

Substances chimiques

Bacterial Proteins 0
Coenzymes 0
Protein Subunits 0
Recombinant Proteins 0
NADP 53-59-8
Carbohydrate Dehydrogenases EC 1.1.-
L-rhamnose dehydrogenase EC 1.1.1.173
Rhamnose QN34XC755A

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

637-646

Informations de copyright

© 2021 Federation of European Biochemical Societies.

Références

Egan SM and Schleif RF (1993) A regulatory cascade in the induction of rhaBAD. J Mol Biol 234, 87-98.
Baldomá L and Aguilar J (1987) Involvement of lactaldehyde dehydrogenase in several metabolic pathways of Escherichia coli K12. J Biol Chem 262, 13991-13996.
Watanabe S, Saimura M and Makino K (2008) Eukaryotic and bacterial gene clusters related to an alternative pathway of nonphosphorylated L-rhamnose metabolism. J Biol Chem 283, 20372-20382.
Khosravi C, Kun RS, Visser J, Aguilar-Pontes MV, de Vries RP and Battaglia E (2017) In vivo functional analysis of L-rhamnose metabolic pathway in Aspergillus niger: a tool to identify the potential inducer of RhaR. BMC Microbiol 17, 214.
Watanabe S and Makino K (2009) Novel modified version of nonphosphorylated sugar metabolism - an alternative L-rhamnose pathway of Sphingomonas sp. FEBS J 276, 1554-1567.
Bae J, Kim SM and Lee SB (2015) Identification and characterization of 2-keto-3-deoxy-L-rhamnonate dehydrogenase belonging to the MDR superfamily from the thermoacidophilic bacterium Sulfobacillus thermosulfidooxidans: implications to L-rhamnose metabolism in archaea. Extremophiles 19, 469-478.
Kim SM, Paek KH and Lee SB (2012) Characterization of NADP+-specific L-rhamnose dehydrogenase from the thermoacidophilic Archaeon Thermoplasma acidophilum. Extremophiles 16, 447-454.
Watanabe S, Piyanart S and Makino K (2008) Metabolic fate of L-lactaldehyde derived from an alternative L-rhamnose pathway. FEBS J 275, 5139-5149.
Jörnvall H, Persson B, Krook M, Atrian S, Gonzàlez-Duarte R, Jeffery J and Ghosh D (1995) Short-chain dehydrogenases/reductases (SDR). Biochemistry 34, 6003-6013.
Oppermann U, Filling C, Hult M, Shafqat N, Wu X, Lindh M, Shafqat J, Nordling E, Kallberg Y, Persson B et al. (2003) Short-chain dehydrogenases/reductases (SDR): the 2002 update. Chem Biol Interact 143-144, 247-253.
Persson B, Kallberg Y, Oppermann U and Jörnvall H (2003) Coenzyme-based functional assignments of short-chain dehydrogenases/reductases (SDRs). Chem Biol Interact 143-144, 271-278.
Nishioka T, Yasutake Y, Nishiya Y and Tamura T (2012) Structure-guided mutagenesis for the improvement of substrate specificity of Bacillus megaterium glucose 1-dehydrogenase IV. FEBS J 279, 3264-3275.
Yamamoto K, Kurisu G, Kusunoki M, Tabata S, Urabe I and Osaki S (2001) Crystal structure of glucose dehydrogenase from Bacillus megaterium IWG3 at 1.7 Å resolution. J Biochem 129, 303-312.
Yasutake Y, Nishiya Y, Tamura N and Tamura T (2007) Structural insights into unique substrate selectivity of Thermoplasma acidophilum D-aldohexose dehydrogenase. J Mol Biol 367, 1034-1046.
Asada Y, Endo S, Inoue Y, Mamiya H, Hara A, Kunishima N and Matsunaga T (2009) Biochemical and structural characterization of a short-chain dehydrogenase/reductase of Thermus thermophilus HB8: a hyperthermostable aldose-1-dehydrogenase with broad substrate specificity. Chem Biol Interact 178, 117-126.
Watanabe S, Fukumori F, Nishiwaki H, Sakurai Y, Tajima K and Watanabe Y (2019) Novel non-phosphorylative pathway of pentose metabolism from bacteria. Sci Rep 9, 155.
Johnsen U, Sutter JM, Zaiß H and Schönheit P (2013) L-arabinose degradation pathway in the haloarchaeon Haloferax volcanii involves a novel type of L-arabinose dehydrogenase. Extremophiles 17, 897-909.
Hirata K, Yamashita K, Ueno G, Kawano Y, Hasegawa K, Kumasaka T and Yamamoto M (2019) ZOO: an automatic data-collection system for high-throughput structure analysis in protein microcrystallography. Acta Crystallogr D Struct Biol 75, 138-150.
Yamashita K, Hirata K and Yamamoto M (2018) KAMO: towards automated data processing for microcrystals. Acta Crystallogr D Struct Biol 74, 441-449.
Kabsch W (2010) Xds. Acta Crystallogr D Biol Crystallogr 66, 125-132.
Long F, Vagin A, Young P and Murshudov GN (2008) BALBES: a molecular-replacement pipeline. Acta Crystallogr D Biol Crystallogr 64, 125-132.
Zaccai NR, Carter LG, Berrow NS, Sainsbury S, Nettleship JE, Walter TS, Harlos K, Owens RJ, Wilson KS, Stuart DI et al. (2007) Crystal structure of a 3-oxoacyl-(acylcarrier protein) reductase (BA3989) from Bacillus anthracis at 2.4-Å resolution. Proteins 70, 562-567.
Emsley P, Lohkamp B, Scott WG and Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66, 486-501.
Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW et al. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66, 213-221.
Ghosh D, Weeks CM, Grochulski P, Duax WL, Erman M, Rimsay RL and Orr JC (1991) Three-dimensional structure of holo 3α,20β-hydroxysteroid dehydrogenase: a member of a short-chain dehydrogenase family. Proc Natl Acad Sci USA 88, 10064-10068.
Price AC, Zhang YM, Rock CO and White SW (2004) Cofactor-induced conformational rearrangements establish a catalytically competent active site and a proton relay conduit in FabG. Structure 12, 417-428.
Rakus JF, Fedorov AA, Fedorov EV, Glasner ME, Hubbard BK, Delli JD, Babbitt PC, Almo SC and Gerlt JA (2008) Evolution of enzymatic activities in the enolase superfamily: L-rhamnonate dehydratase. Biochemistry 47, 9944-9954.
Ghasempur S, Eswaramoorthy S, Hillerich BS, Seidel RD, Swaminathan S, Almo SC and Gerlt JA (2014) Discovery of a novel L-lyxonate degradation pathway in Pseudomonas aeruginosa PAO1. Biochemistry 53, 3357-3366.

Auteurs

Kentaroh Yoshiwara (K)

Faculty of Agriculture, Ehime University, Matsuyama, Japan.

Seiya Watanabe (S)

Faculty of Agriculture, Ehime University, Matsuyama, Japan.
Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Japan.
Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan.

Yasunori Watanabe (Y)

Faculty of Agriculture, Ehime University, Matsuyama, Japan.
Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Japan.
Faculty of Science, Yamagata University, Japan.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Animals Hemiptera Insect Proteins Phylogeny Insecticides
alpha-Synuclein Humans Animals Mice Lewy Body Disease

Conservation of the cooling agent binding pocket within the TRPM subfamily.

Kate Huffer, Matthew C S Denley, Elisabeth V Oskoui et al.
1.00
TRPM Cation Channels Animals Binding Sites Mice Pyrimidinones

Classifications MeSH