Crystal structure of l-rhamnose 1-dehydrogenase involved in the nonphosphorylative pathway of l-rhamnose metabolism in bacteria.
Amino Acid Sequence
Azotobacter vinelandii
/ enzymology
Bacterial Proteins
/ chemistry
Carbohydrate Dehydrogenases
/ chemistry
Carbohydrate Metabolism
Catalytic Domain
Cloning, Molecular
Coenzymes
/ chemistry
Crystallography, X-Ray
Escherichia coli
/ genetics
Gene Expression
Hydrogen Bonding
Hydrophobic and Hydrophilic Interactions
Kinetics
Models, Molecular
NADP
/ chemistry
Protein Binding
Protein Conformation, alpha-Helical
Protein Conformation, beta-Strand
Protein Interaction Domains and Motifs
Protein Multimerization
Protein Subunits
/ chemistry
Recombinant Proteins
/ chemistry
Rhamnose
/ chemistry
Sequence Alignment
Sequence Homology, Amino Acid
Substrate Specificity
aldose 1-dehydrogenase
crystal structure
l-rhamnose metabolism
short-chain dehydrogenase/reductase
Journal
FEBS letters
ISSN: 1873-3468
Titre abrégé: FEBS Lett
Pays: England
ID NLM: 0155157
Informations de publication
Date de publication:
03 2021
03 2021
Historique:
received:
12
12
2020
revised:
18
01
2021
accepted:
19
01
2021
pubmed:
23
1
2021
medline:
29
7
2021
entrez:
22
1
2021
Statut:
ppublish
Résumé
Several microorganisms can utilize l-rhamnose as a carbon and energy source through the nonphosphorylative metabolic pathway, in which l-rhamnose 1-dehydrogenase (RhaDH) catalyzes the NAD(P)
Identifiants
pubmed: 33482017
doi: 10.1002/1873-3468.14046
doi:
Substances chimiques
Bacterial Proteins
0
Coenzymes
0
Protein Subunits
0
Recombinant Proteins
0
NADP
53-59-8
Carbohydrate Dehydrogenases
EC 1.1.-
L-rhamnose dehydrogenase
EC 1.1.1.173
Rhamnose
QN34XC755A
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
637-646Informations de copyright
© 2021 Federation of European Biochemical Societies.
Références
Egan SM and Schleif RF (1993) A regulatory cascade in the induction of rhaBAD. J Mol Biol 234, 87-98.
Baldomá L and Aguilar J (1987) Involvement of lactaldehyde dehydrogenase in several metabolic pathways of Escherichia coli K12. J Biol Chem 262, 13991-13996.
Watanabe S, Saimura M and Makino K (2008) Eukaryotic and bacterial gene clusters related to an alternative pathway of nonphosphorylated L-rhamnose metabolism. J Biol Chem 283, 20372-20382.
Khosravi C, Kun RS, Visser J, Aguilar-Pontes MV, de Vries RP and Battaglia E (2017) In vivo functional analysis of L-rhamnose metabolic pathway in Aspergillus niger: a tool to identify the potential inducer of RhaR. BMC Microbiol 17, 214.
Watanabe S and Makino K (2009) Novel modified version of nonphosphorylated sugar metabolism - an alternative L-rhamnose pathway of Sphingomonas sp. FEBS J 276, 1554-1567.
Bae J, Kim SM and Lee SB (2015) Identification and characterization of 2-keto-3-deoxy-L-rhamnonate dehydrogenase belonging to the MDR superfamily from the thermoacidophilic bacterium Sulfobacillus thermosulfidooxidans: implications to L-rhamnose metabolism in archaea. Extremophiles 19, 469-478.
Kim SM, Paek KH and Lee SB (2012) Characterization of NADP+-specific L-rhamnose dehydrogenase from the thermoacidophilic Archaeon Thermoplasma acidophilum. Extremophiles 16, 447-454.
Watanabe S, Piyanart S and Makino K (2008) Metabolic fate of L-lactaldehyde derived from an alternative L-rhamnose pathway. FEBS J 275, 5139-5149.
Jörnvall H, Persson B, Krook M, Atrian S, Gonzàlez-Duarte R, Jeffery J and Ghosh D (1995) Short-chain dehydrogenases/reductases (SDR). Biochemistry 34, 6003-6013.
Oppermann U, Filling C, Hult M, Shafqat N, Wu X, Lindh M, Shafqat J, Nordling E, Kallberg Y, Persson B et al. (2003) Short-chain dehydrogenases/reductases (SDR): the 2002 update. Chem Biol Interact 143-144, 247-253.
Persson B, Kallberg Y, Oppermann U and Jörnvall H (2003) Coenzyme-based functional assignments of short-chain dehydrogenases/reductases (SDRs). Chem Biol Interact 143-144, 271-278.
Nishioka T, Yasutake Y, Nishiya Y and Tamura T (2012) Structure-guided mutagenesis for the improvement of substrate specificity of Bacillus megaterium glucose 1-dehydrogenase IV. FEBS J 279, 3264-3275.
Yamamoto K, Kurisu G, Kusunoki M, Tabata S, Urabe I and Osaki S (2001) Crystal structure of glucose dehydrogenase from Bacillus megaterium IWG3 at 1.7 Å resolution. J Biochem 129, 303-312.
Yasutake Y, Nishiya Y, Tamura N and Tamura T (2007) Structural insights into unique substrate selectivity of Thermoplasma acidophilum D-aldohexose dehydrogenase. J Mol Biol 367, 1034-1046.
Asada Y, Endo S, Inoue Y, Mamiya H, Hara A, Kunishima N and Matsunaga T (2009) Biochemical and structural characterization of a short-chain dehydrogenase/reductase of Thermus thermophilus HB8: a hyperthermostable aldose-1-dehydrogenase with broad substrate specificity. Chem Biol Interact 178, 117-126.
Watanabe S, Fukumori F, Nishiwaki H, Sakurai Y, Tajima K and Watanabe Y (2019) Novel non-phosphorylative pathway of pentose metabolism from bacteria. Sci Rep 9, 155.
Johnsen U, Sutter JM, Zaiß H and Schönheit P (2013) L-arabinose degradation pathway in the haloarchaeon Haloferax volcanii involves a novel type of L-arabinose dehydrogenase. Extremophiles 17, 897-909.
Hirata K, Yamashita K, Ueno G, Kawano Y, Hasegawa K, Kumasaka T and Yamamoto M (2019) ZOO: an automatic data-collection system for high-throughput structure analysis in protein microcrystallography. Acta Crystallogr D Struct Biol 75, 138-150.
Yamashita K, Hirata K and Yamamoto M (2018) KAMO: towards automated data processing for microcrystals. Acta Crystallogr D Struct Biol 74, 441-449.
Kabsch W (2010) Xds. Acta Crystallogr D Biol Crystallogr 66, 125-132.
Long F, Vagin A, Young P and Murshudov GN (2008) BALBES: a molecular-replacement pipeline. Acta Crystallogr D Biol Crystallogr 64, 125-132.
Zaccai NR, Carter LG, Berrow NS, Sainsbury S, Nettleship JE, Walter TS, Harlos K, Owens RJ, Wilson KS, Stuart DI et al. (2007) Crystal structure of a 3-oxoacyl-(acylcarrier protein) reductase (BA3989) from Bacillus anthracis at 2.4-Å resolution. Proteins 70, 562-567.
Emsley P, Lohkamp B, Scott WG and Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66, 486-501.
Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW et al. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66, 213-221.
Ghosh D, Weeks CM, Grochulski P, Duax WL, Erman M, Rimsay RL and Orr JC (1991) Three-dimensional structure of holo 3α,20β-hydroxysteroid dehydrogenase: a member of a short-chain dehydrogenase family. Proc Natl Acad Sci USA 88, 10064-10068.
Price AC, Zhang YM, Rock CO and White SW (2004) Cofactor-induced conformational rearrangements establish a catalytically competent active site and a proton relay conduit in FabG. Structure 12, 417-428.
Rakus JF, Fedorov AA, Fedorov EV, Glasner ME, Hubbard BK, Delli JD, Babbitt PC, Almo SC and Gerlt JA (2008) Evolution of enzymatic activities in the enolase superfamily: L-rhamnonate dehydratase. Biochemistry 47, 9944-9954.
Ghasempur S, Eswaramoorthy S, Hillerich BS, Seidel RD, Swaminathan S, Almo SC and Gerlt JA (2014) Discovery of a novel L-lyxonate degradation pathway in Pseudomonas aeruginosa PAO1. Biochemistry 53, 3357-3366.