Journal

Biomolecular NMR assignments
ISSN: 1874-270X
Titre abrégé: Biomol NMR Assign
Pays: Netherlands
ID NLM: 101472371

Informations de publication

Date de publication:
04 2021
Historique:
received: 09 12 2020
accepted: 08 01 2021
pubmed: 24 1 2021
medline: 7 4 2021
entrez: 23 1 2021
Statut: ppublish

Résumé

The SARS-CoV-2 (SCoV-2) virus is the causative agent of the ongoing COVID-19 pandemic. It contains a positive sense single-stranded RNA genome and belongs to the genus of Betacoronaviruses. The 5'- and 3'-genomic ends of the 30 kb SCoV-2 genome are potential antiviral drug targets. Major parts of these sequences are highly conserved among Betacoronaviruses and contain cis-acting RNA elements that affect RNA translation and replication. The 31 nucleotide (nt) long highly conserved stem-loop 5a (SL5a) is located within the 5'-untranslated region (5'-UTR) important for viral replication. SL5a features a U-rich asymmetric bulge and is capped with a 5'-UUUCGU-3' hexaloop, which is also found in stem-loop 5b (SL5b). We herein report the extensive

Identifiants

pubmed: 33484403
doi: 10.1007/s12104-021-10007-w
pii: 10.1007/s12104-021-10007-w
pmc: PMC7822759
doi:

Substances chimiques

5' Untranslated Regions 0
Carbon Isotopes 0
Nitrogen Isotopes 0
Nitrogen-15 0
Hydrogen 7YNJ3PO35Z
Coronavirus Papain-Like Proteases EC 3.4.22.2
papain-like protease, SARS-CoV-2 EC 3.4.22.2
Carbon-13 FDJ0A8596D

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

203-211

Subventions

Organisme : Deutsche Forschungsgemeinschaft
ID : CRC902
Organisme : Deutsche Forschungsgemeinschaft
ID : GRK 1986
Organisme : Deutsche Forschungsgemeinschaft
ID : Infrastructure program: 277478796, 277479031, 392682309, 452632086, 70653611
Organisme : Hessisches Ministerium für Wissenschaft und Kunst
ID : BMRZ
Organisme : Hessisches Ministerium für Wissenschaft und Kunst
ID : IWB-EFRE-programme 20007375
Organisme : Karolinska Institutet
ID : Start-Up funds

Références

Bodenhausen G, Ruben DJ (1980) Natural abundance Nitrogen-15-NMR by enhanced heteronuclear spectroscopy. Chem Phys Lett 69:185–189
doi: 10.1016/0009-2614(80)80041-8
Chen S-C, Olsthoorn RCL (2010) Group-specific structural features of the 5′-proximal sequences of coronavirus genomic RNAs. Virology 401:29–41. https://doi.org/10.1016/j.virol.2010.02.007
doi: 10.1016/j.virol.2010.02.007
Cheong C, Varani G, Tinoco I (1990) Solution structure of an unusually stable RNA hairpin, 5GGAC(UUCG)GUCC. Nature 346:680–682
doi: 10.1038/346680a0
Cherepanov AV, Glaubitz C, Schwalbe H (2010) High-resolution studies of uniformly 13C,15N-labeled RNA by solid-state NMR spectroscopy. Angew Chem Int Ed 49:4747–4750. https://doi.org/10.1002/anie.200906885
doi: 10.1002/anie.200906885
Dingley AJ, Grzesiek S (1998) Direct observation of hydrogen bonds in nucleic acid base pairs by internucleotide 2JNN couplings. J Am Chem Soc 7863:714–718
Dingley AJ, Nisius L, Cordier F, Grzesiek S (2008) Direct detection of N–H[...]N hydrogen bonds in biomolecules by NMR spectroscopy. Nat Protoc 3:242–248. https://doi.org/10.1038/nprot.2007.497
doi: 10.1038/nprot.2007.497
Ebrahimi M, Rossi P, Rogers C, Harbison GS (2001) Dependence of 13 C NMR chemical shifts on conformations of RNA nucleosides and nucleotides. J Magn Reson 150:1–9. https://doi.org/10.1006/jmre.2001.2314
doi: 10.1006/jmre.2001.2314
Favier A, Brutscher B (2011) Recovering lost magnetization: polarization enhancement in biomolecular NMR. J Biomol NMR 49:9–15. https://doi.org/10.1007/s10858-010-9461-5
doi: 10.1007/s10858-010-9461-5
Fürtig B, Richter C, Wöhnert J, Schwalbe H (2003) NMR spectroscopy of RNA. ChemBioChem 4:936–962. https://doi.org/10.1002/cbic.200300700
doi: 10.1002/cbic.200300700
Fürtig B, Richter C, Bermel W, Schwalbe H (2004) New NMR experiments for RNA nucleobase resonance assignment and chemical shift analysis of an RNA UUCG tetraloop. J Biomol NMR 28:69–79. https://doi.org/10.1023/B:JNMR.0000012863.63522.1f
doi: 10.1023/B:JNMR.0000012863.63522.1f
Guan B-J, Wu H-Y, Brian DA (2011) An optimal cis -replication stem-loop IV in the 5′ untranslated region of the mouse coronavirus genome extends 16 nucleotides into open reading frame 1. J Virol 85:5593–5605. https://doi.org/10.1128/JVI.00263-11
doi: 10.1128/JVI.00263-11
Guillerez J, Lopez PJ, Proux F, Launay H, Dreyfus M (2005) A mutation in T7 RNA polymerase that facilitates promoter clearance. Proc Natl Acad Sci USA 102:5958–5963. https://doi.org/10.1073/pnas.0407141102
doi: 10.1073/pnas.0407141102
Hu B, Guo H, Zhou P, Shi ZL (2020) Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. https://doi.org/10.1038/s41579-020-00459-7
doi: 10.1038/s41579-020-00459-7
Kay LE, Xu G-Y, Singer AU, Muhandiram DR, Forman-Kay JD (1993) A gradient-enhanced HCCH-TOCSY experiment for recording side-chain 1H and 13C correlations in H2O samples of proteins. J Magn Reson Ser B 101:333–337
doi: 10.1006/jmrb.1993.1053
Kelly JA, Olson AN, Neupane K, Munshi S, Emeterio JS, Pollack L, Woodside MT, Dinman JD (2020) Structural and functional conservation of the programmed −1 ribosomal frameshift signal of SARS coronavirus 2 (SARS-CoV-2). J Biol Chem 295:10741–10748. https://doi.org/10.1074/jbc.AC120.013449
doi: 10.1074/jbc.AC120.013449
Lee W, Tonelli M, Markley JL (2015) NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31:1325–1327. https://doi.org/10.1093/bioinformatics/btu830
doi: 10.1093/bioinformatics/btu830
Madhugiri R, Fricke M, Marz M, Ziebuhr J (2016) Coronavirus cis-acting RNA elements. Adv Virus Res 96:127–163
doi: 10.1016/bs.aivir.2016.08.007
Manfredonia I, Nithin C, Ponce-Salvatierra A, Ghosh P, Wirecki TK, Marinus T, Ogando NS, Snijder EJ, Van HMJ, Bujnicki JM, Incarnato D (2020) Genome-wide mapping of SARS-CoV-2 RNA structures identifies therapeutically-relevant elements. Nucleic Acids Res. https://doi.org/10.1093/nar/gkaa1053
doi: 10.1093/nar/gkaa1053
Martin S, Blankenship C, Rausch JW, Sztuba-Solinska J (2019) Using SHAPE-MaP to probe small molecule-RNA interactions. Methods 167:105–116. https://doi.org/10.1016/j.ymeth.2019.04.009
doi: 10.1016/j.ymeth.2019.04.009
Masters PS (2019) Coronavirus genomic RNA packaging. Virology 537:198–207
doi: 10.1016/j.virol.2019.08.031
Nozinovic S, Fürtig B, Jonker HRA, Richter C, Schwalbe H (2010) High-resolution NMR structure of an RNA model system: the 14-mer cUUCGg tetraloop hairpin RNA. Nucleic Acids Res 38:683–694. https://doi.org/10.1093/nar/gkp956
doi: 10.1093/nar/gkp956
Ohlenschläger O, Wöhnert J, Bucci E, Seitz S, Häfner S, Ramachandran R, Zell R, Görlach M (2004) The structure of the stemloop D subdomain of coxsackievirus B3 cloverleaf RNA and its interaction with the proteinase 3C. Structure 12:237–248. https://doi.org/10.1016/j.str.2004.01.014
doi: 10.1016/j.str.2004.01.014
Piotto M, Saudek V, Sklen V (1992) Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR 2:661–665
doi: 10.1007/BF02192855
Rangan R, Zheludev IN, Das R (2020) RNA genome conservation and secondary structure in SARS-CoV-2 and SARS-related viruses. RNA 26:937–959
doi: 10.1261/rna.076141.120
Richter C, Kovacs H, Buck J, Wacker A, Fürtig B, Bermel W, Schwalbe H (2010) 13C-direct detected NMR experiments for the sequential J-based resonance assignment of RNA oligonucleotides. J Biomol NMR 47:259–269. https://doi.org/10.1007/s10858-010-9429-5
doi: 10.1007/s10858-010-9429-5
Schürer H, Lang K, Schuster J, Mörl M (2002) A universal method to produce in vitro transcripts with homogeneous 3′ ends. Nucleic Acids Res 30:e56
doi: 10.1093/nar/gnf055
Shaka AJ, Hwang T-L (1995) Water suppression that works. Excitation sculpting using arbitrary waveforms and pulsed field gradients. J Magn Reson Ser A 112:275–279
doi: 10.1006/jmra.1995.1047
Shaka AJ, Lee CJ, Pines A (1988) Iterative schemes for bilinear operators; application to spin decoupling. J Magn Reson 77:274–293
Simon B, Zanier K, Sattler M (2001) A TROSY relayed HCCH-COSY experiment for correlating adenine H2/H8 resonances in uniformly 13C-labeled RNA molecules. J Biomol NMR 20:173–176
doi: 10.1023/A:1011214914452
Sklenar V, Peterson RD, Rejante MR, Feigon J (1993a) Two- and three-dimensional HCN experiments for correlating base and sugar resonances in lSN,13C-labeled RNA oligonucleotides. J Biomol NMR 3:721–727
doi: 10.1007/BF00198375
Sklenar V, Piotto M, Leppik R, Saudek V (1993b) Gradient-tailored water suppression for 1H-15N HSQC experiments optimized to retain full sensitivity. J Magn Reson Ser A 102:241–245
doi: 10.1006/jmra.1993.1098
Sklenár V, Dieckmann T, Butcher SE, Feigon J (1996) Through-bond correlation of imino and aromatic resonances in 13C-, 15N-labeled RNA via heteronuclear TOCSY. J Biomol NMR 7:83–87
doi: 10.1007/BF00190460
Solyom Z, Schwarten M, Geist L, Konrat R, Willbold D, Brutscher B (2013) BEST-TROSY experiments for time-efficient sequential resonance assignment of large disordered proteins. J Biomol NMR 55:311–321. https://doi.org/10.1007/s10858-013-9715-0
doi: 10.1007/s10858-013-9715-0
Tidu A, Janvier A, Schaeffer L, Sosnowski P, Kuhn L, Hammann P, Westhof E, Eriani G, Martin F (2020) The viral protein NSP1 acts as a ribosome gatekeeper for shutting down host translation and fostering SARS-CoV-2 translation. RNA. https://doi.org/10.1261/rna.078121.120
V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V (2020) Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. https://doi.org/10.1038/s41579-020-00468-6
doi: 10.1038/s41579-020-00468-6
Vuister W, Bax AD (1992) Resolution enhancement and spectral editing of uniformly 13C-enriched proteins by homonuclear broadband 13C decoupling. J Magn Reson 98:428–435
Wacker A, Weigand JE, Akabayov SR, Altincekic N, Bains K, Banijamali E, Binas O, Castillo-martinez J, Cetiner E, Chiu L, Davila-Calderon J, Dhamotharan K, Duchardt-Ferner E, Ferner J, Frydman L, Fürtig B, Hacker C, Haddad C, Haehnke M, Hengesbach M, Hiller F, Hohmann KF, Hymon D, De JV, Jonker H, Luo L, Mertinkus KR, Keller H, Knezic B, Landgraf T, Löhr F, Muhs C, Novakovic M, Oxenfarth A, Palomino-Schätzlein M, Petzold K, Peter SA, Pyper DJ, Qureshi NS, Riad M, Richter C, Saxena K, Schamber T, Scherf T, Schlagnitweit J, Schlundt A, Schnieders R, Schwalbe H, Simba-lahuasi A, Sreeramulu S, Stirnal E, Sudakov A, Tants J-N, Tolbert BS, Vögele J, Weiß L, Wirmer-Bartoschek J, Wirz Martin MA, Wöhnert J, Zetzsche H (2020) Secondary structure determination of conserved SARS-CoV-2 RNA elements by NMR spectroscopy. Nucleic Acids Res. https://doi.org/10.1093/nar/gkaa1013
doi: 10.1093/nar/gkaa1013
Wishart DS, Bigam CG, Yao J, Abildgaard F, Jane HD, Oldfield E, Markley JL, Sykes BD (1995) Chemical shift referencing in biomolecular NMR. J Biomol NMR 6:135–140
doi: 10.1007/BF00211777
Wöhnert J, Dingley AJ, Stoldt M, Görlach M, Grzesiek S, Brown LR (1999) Direct identification of NH ··· N hydrogen bonds in non-canonical base pairs of RNA by NMR spectroscopy. Nucleic Acids Res 27:3104–3110
doi: 10.1093/nar/27.15.3104
Wöhnert J, Görlach M, Schwalbe H (2003) Triple resonance experiments for the simultaneous correlation of H6/H5 and exchangeable protons of pyrimidine nucleotides in 13C,15N-labeled RNA applicable to larger RNA molecules. J Biomol NMR 26:79–83

Auteurs

Robbin Schnieders (R)

Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany.
Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany.

Stephen A Peter (SA)

Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287, Darmstadt, Germany.

Elnaz Banijamali (E)

Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum, Solnavägen 9, 17177, Stockholm, Sweden.

Magdalena Riad (M)

Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum, Solnavägen 9, 17177, Stockholm, Sweden.

Nadide Altincekic (N)

Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany.
Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany.

Jasleen Kaur Bains (JK)

Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany.
Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany.

Betül Ceylan (B)

Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany.
Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany.

Boris Fürtig (B)

Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany.
Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany.

J Tassilo Grün (JT)

Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany.
Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany.

Martin Hengesbach (M)

Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany.
Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany.

Katharina F Hohmann (KF)

Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany.
Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany.

Daniel Hymon (D)

Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany.
Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany.

Bozana Knezic (B)

Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany.
Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany.

Andreas Oxenfarth (A)

Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany.
Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany.

Katja Petzold (K)

Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum, Solnavägen 9, 17177, Stockholm, Sweden.

Nusrat S Qureshi (NS)

EMBL Heidelberg, Meyerhofstraße 1, 69117, Heidelberg, Germany.

Christian Richter (C)

Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany.
Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany.

Judith Schlagnitweit (J)

Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum, Solnavägen 9, 17177, Stockholm, Sweden.

Andreas Schlundt (A)

Institute for Molecular Biosciences, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany.
Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany.

Harald Schwalbe (H)

Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany. Schwalbe@nmr.uni-frankfurt.de.
Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany. Schwalbe@nmr.uni-frankfurt.de.

Elke Stirnal (E)

Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany.
Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany.

Alexey Sudakov (A)

Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany.
Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany.

Jennifer Vögele (J)

Institute for Molecular Biosciences, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany.
Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany.

Anna Wacker (A)

Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany.
Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany.

Julia E Weigand (JE)

Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287, Darmstadt, Germany.

Julia Wirmer-Bartoschek (J)

Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany.
Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany.

Jens Wöhnert (J)

Institute for Molecular Biosciences, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany.
Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany.

Articles similaires

Databases, Protein Protein Domains Protein Folding Proteins Deep Learning
Humans Multiple Myeloma Male Aged Glomerulosclerosis, Focal Segmental

Total elbow arthroplasty in England.

Zaid Hamoodi, Adrian Sayers, Michael R Whitehouse et al.
1.00
Humans England Female Male Arthroplasty, Replacement, Elbow
Humans COVID-19 Immunoglobulin G Antibodies, Viral SARS-CoV-2

Classifications MeSH