Small-molecule control of neurotransmitter sulfonation.
Allosteric Site
Arylsulfotransferase
/ metabolism
Catecholamines
/ metabolism
Depressive Disorder, Major
/ metabolism
Epithelial Cells
/ metabolism
Humans
Kinetics
Molecular Dynamics Simulation
Molecular Structure
Neurotransmitter Agents
/ metabolism
Serotonin
/ metabolism
Structure-Activity Relationship
Sulfotransferases
/ metabolism
SULT1A3
allosteric
catecholamine
human mammary epithelial cells
inhibitor
molecular dynamics
neurotransmitter
structure activity relationship
sulfotransferase
Journal
The Journal of biological chemistry
ISSN: 1083-351X
Titre abrégé: J Biol Chem
Pays: United States
ID NLM: 2985121R
Informations de publication
Date de publication:
Historique:
received:
09
07
2020
revised:
11
11
2020
accepted:
18
11
2020
pubmed:
24
1
2021
medline:
25
8
2021
entrez:
23
1
2021
Statut:
ppublish
Résumé
Controlling unmodified serotonin levels in brain synapses is a primary objective when treating major depressive disorder-a disease that afflicts ∼20% of the world's population. Roughly 60% of patients respond poorly to first-line treatments and thus new therapeutic strategies are sought. To this end, we have constructed isoform-specific inhibitors of the human cytosolic sulfotransferase 1A3 (SULT1A3)-the isoform responsible for sulfonating ∼80% of the serotonin in the extracellular brain fluid. The inhibitor design includes a core ring structure, which anchors the inhibitor into a SULT1A3-specific binding pocket located outside the active site, and a side chain crafted to act as a latch to inhibit turnover by fastening down the SULT1A3 active-site cap. The inhibitors are allosteric, they bind with nanomolar affinity and are highly specific for the 1A3 isoform. The cap-stabilizing effects of the latch can be accurately calculated and are predicted to extend throughout the cap and into the surrounding protein. A free-energy correlation demonstrates that the percent inhibition at saturating inhibitor varies linearly with cap stabilization - the correlation is linear because the rate-limiting step of the catalytic cycle, nucleotide release, scales linearly with the fraction of enzyme in the cap-open form. Inhibitor efficacy in cultured cells was studied using a human mammary epithelial cell line that expresses SULT1A3 at levels comparable with those found in neurons. The inhibitors perform similarly in ex vivo and in vitro studies; consequently, SULT1A3 turnover can now be potently suppressed in an isoform-specific manner in human cells.
Identifiants
pubmed: 33485192
pii: S0021-9258(20)00084-8
doi: 10.1074/jbc.RA120.015177
pmc: PMC7948405
pii:
doi:
Substances chimiques
Catecholamines
0
Neurotransmitter Agents
0
Serotonin
333DO1RDJY
Sulfotransferases
EC 2.8.2.-
Arylsulfotransferase
EC 2.8.2.1
monoamine-sulfating phenol sulfotransferase
EC 2.8.2.1
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
100094Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM112728
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM121849
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM127144
Pays : United States
Informations de copyright
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
Déclaration de conflit d'intérêts
Conflict of interest A provisional patent covering the compounds described in this manuscript has been submitted (US patent application number PCT/US2019/065442). All authors listed on the masthead are co-inventors on the patent.
Références
J Biol Chem. 2014 Sep 19;289(38):26474-26480
pubmed: 25056952
Cell Chem Biol. 2016 May 19;23(5):579-586
pubmed: 27203377
Pharmacotherapy. 2015 Apr;35(4):433-49
pubmed: 25884531
Biochemistry. 2016 Jul 26;55(29):4036-46
pubmed: 27356022
Br J Clin Pharmacol. 1983 Jul;16(1):3-7
pubmed: 6882621
Mol Pharmacol. 1998 Dec;54(6):942-8
pubmed: 9855620
Biochemistry. 2010 Jun 15;49(23):4779-85
pubmed: 20429582
AAPS J. 2010 Dec;12(4):525-36
pubmed: 20582579
J Biol Chem. 2013 Mar 22;288(12):8619-8626
pubmed: 23362278
Biochem Pharmacol. 2019 Jan;159:25-31
pubmed: 30423313
Oncogene. 2006 Mar 13;25(11):1673-8
pubmed: 16550167
Bioinformatics. 2006 Jan 15;22(2):195-201
pubmed: 16301204
PLoS Med. 2006 Nov;3(11):e442
pubmed: 17132052
Nat Rev Neurosci. 2006 Feb;7(2):137-51
pubmed: 16429123
J Biol Chem. 2017 Dec 8;292(49):20305-20312
pubmed: 29038294
J Biol Chem. 2019 Feb 15;294(7):2293-2301
pubmed: 30545938
J Chem Inf Model. 2012 May 25;52(5):1319-27
pubmed: 22462609
Biochemistry. 2014 Nov 11;53(44):6893-900
pubmed: 25314023
Drug Metab Dispos. 2009 Oct;37(10):2069-78
pubmed: 19589875
World Psychiatry. 2014 Jun;13(2):153-60
pubmed: 24890068
Eur Neuropsychopharmacol. 1999 Jan;9(1-2):83-91
pubmed: 10082232
Arch Biochem Biophys. 2018 Sep 1;653:10-23
pubmed: 29936084
Biochemistry. 2015 Oct 6;54(39):6114-22
pubmed: 26340710
Anal Biochem. 1976 May 7;72:248-54
pubmed: 942051
Biochemistry. 2012 Jul 17;51(28):5674-83
pubmed: 22703301
Proteins. 2003 Sep 1;52(4):609-23
pubmed: 12910460
Clin Exp Pharmacol Physiol Suppl. 1999 Apr;26:S41-53
pubmed: 10386253
Biochemistry. 2013 Jan 15;52(2):415-24
pubmed: 23256751
Am J Pathol. 2000 Jun;156(6):1841-8
pubmed: 10854207
J Affect Disord. 2018 Feb;227:777-786
pubmed: 29254066
J Am Chem Soc. 1994 Mar 9;116(5):2149-2150
pubmed: 21552509
Cancer Res. 1996 Apr 1;56(7):1551-5
pubmed: 8603401
Drug Metab Dispos. 2006 Mar;34(3):361-8
pubmed: 16381672
J Am Acad Child Adolesc Psychiatry. 2010 Oct;49(10):980-9
pubmed: 20855043
Drug Metab Dispos. 2015 Mar;43(3):418-23
pubmed: 25534770
J Comput Chem. 2009 Jan 30;30(2):317-35
pubmed: 18615419
Biochem Educ. 2000 May 1;28(3):144-147
pubmed: 10878310
PLoS One. 2013 Jun 27;8(6):e68007
pubmed: 23826355
Biochem Biophys Res Commun. 2005 Sep 23;335(2):417-23
pubmed: 16083857
Drug Metab Dispos. 2009 Apr;37(4):706-9
pubmed: 19171676
Drug Metab Dispos. 2009 Nov;37(11):2255-61
pubmed: 19679676