Exome-Wide Association Study Identifies FN3KRP and PGP as New Candidate Longevity Genes.
Association study
Healthy aging
HumanExome BeadChip
Long-lived individuals
Rare variants
Journal
The journals of gerontology. Series A, Biological sciences and medical sciences
ISSN: 1758-535X
Titre abrégé: J Gerontol A Biol Sci Med Sci
Pays: United States
ID NLM: 9502837
Informations de publication
Date de publication:
30 04 2021
30 04 2021
Historique:
received:
18
04
2020
pubmed:
26
1
2021
medline:
17
8
2021
entrez:
25
1
2021
Statut:
ppublish
Résumé
Despite enormous research efforts, the genetic component of longevity has remained largely elusive. The investigation of common variants, mainly located in intronic or regulatory regions, has yielded only little new information on the heritability of the phenotype. Here, we performed a chip-based exome-wide association study investigating 62 488 common and rare coding variants in 1248 German long-lived individuals, including 599 centenarians and 6941 younger controls (age < 60 years). In a single-variant analysis, we observed an exome-wide significant association between rs1046896 in the gene fructosamine-3-kinase-related-protein (FN3KRP) and longevity. Noteworthy, we found the longevity allele C of rs1046896 to be associated with an increased FN3KRP expression in whole blood; a database look-up confirmed this effect for various other human tissues. A gene-based analysis, in which potential cumulative effects of common and rare variants were considered, yielded the gene phosphoglycolate phosphatase (PGP) as another potential longevity gene, though no single variant in PGP reached the discovery p-value (1 × 10E-04). Furthermore, we validated the previously reported longevity locus cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1). Replication of our results in a French longevity cohort was only successful for rs1063192 in CDKN2B-AS1. In conclusion, we identified 2 new potential candidate longevity genes, FN3KRP and PGP which may influence the phenotype through their role in metabolic processes, that is, the reverse glycation of proteins (FN3KRP) and the control of glycerol-3-phosphate levels (PGP).
Identifiants
pubmed: 33491046
pii: 6118657
doi: 10.1093/gerona/glab023
pmc: PMC8087267
doi:
Substances chimiques
FN3KRP protein, human
EC 2.7.1.-
Phosphotransferases (Alcohol Group Acceptor)
EC 2.7.1.-
phosphoglycolate phosphatase
EC 3.1.3.18
Phosphoric Monoester Hydrolases
EC 3.1.3.2
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
786-795Subventions
Organisme : NIA NIH HHS
ID : P01 AG008761
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG037985
Pays : United States
Informations de copyright
© The Author(s) 2021. Published by Oxford University Press on behalf of The Gerontological Society of America.
Références
Am J Hum Genet. 2001 Jul;69(1):138-47
pubmed: 11404819
Neurobiol Aging. 2011 Nov;32(11):2109.e15-28
pubmed: 21782286
Nat Commun. 2019 Aug 14;10(1):3669
pubmed: 31413261
Mech Ageing Dev. 2016 Dec;160:1-18
pubmed: 27671971
J Gerontol A Biol Sci Med Sci. 2010 May;65(5):478-87
pubmed: 20304771
J Gerontol A Biol Sci Med Sci. 2015 Jan;70(1):110-8
pubmed: 25199915
Am J Hum Genet. 2007 Sep;81(3):559-75
pubmed: 17701901
Genet Epidemiol. 2011 Nov;35(7):606-19
pubmed: 21769936
Biochim Biophys Acta Mol Basis Dis. 2019 Jul 1;1865(7):1718-1744
pubmed: 31109447
J Gerontol A Biol Sci Med Sci. 2019 Aug 16;74(9):1386-1390
pubmed: 29750252
Aging Cell. 2017 Aug;16(4):716-725
pubmed: 28421666
PLoS One. 2013 Jul 12;8(7):e68095
pubmed: 23874508
Nat Genet. 2012 Jan 29;44(3):297-301
pubmed: 22286214
Nat Commun. 2019 Jan 7;10(1):35
pubmed: 30617297
Nat Genet. 2013 Oct;45(10):1238-1243
pubmed: 24013639
Med Hypotheses. 2011 Nov;77(5):739-44
pubmed: 21924559
PLoS One. 2014 Nov 12;9(11):e112430
pubmed: 25390934
Genetics. 2018 Nov;210(3):1109-1124
pubmed: 30401766
Hum Genet. 2006 Apr;119(3):312-21
pubmed: 16463022
Oncotarget. 2017 Mar 28;8(13):21167-21176
pubmed: 28416752
Nat Commun. 2017 Dec 12;8(1):2063
pubmed: 29234056
Mech Ageing Dev. 2011 Jun-Jul;132(6-7):324-30
pubmed: 21740922
Aging (Albany NY). 2017 Nov 10;9(11):2316-2333
pubmed: 29129831
Proc Natl Acad Sci U S A. 2016 Jan 26;113(4):E430-9
pubmed: 26755581
Gerontology. 2012;58(3):227-37
pubmed: 22222677
J Gerontol A Biol Sci Med Sci. 2017 Mar 1;72(3):309-318
pubmed: 27154906
Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2700-5
pubmed: 19196970
Nat Genet. 1994 Jan;6(1):29-32
pubmed: 8136829
Curr Diab Rep. 2011 Dec;11(6):562-9
pubmed: 21975967
Nat Protoc. 2010 Sep;5(9):1564-73
pubmed: 21085122
Aging (Albany NY). 2010 Sep;2(9):612-20
pubmed: 20834067
J Gerontol A Biol Sci Med Sci. 2012 May;67(5):470-9
pubmed: 22499766
PLoS Genet. 2015 Dec 17;11(12):e1005728
pubmed: 26677855
Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):13987-92
pubmed: 18765803
Methods Mol Biol. 2015;1253:301-14
pubmed: 25403539
Hum Genet. 2013 Dec;132(12):1323-38
pubmed: 23925498
Genome Biol. 2017 Apr 27;18(1):77
pubmed: 28449691
Aging (Albany NY). 2017 Jan 13;9(1):247-255
pubmed: 28100865
Nat Commun. 2017 Oct 13;8(1):910
pubmed: 29030599
Aging Cell. 2011 Apr;10(2):185-90
pubmed: 21176090
Biochimie. 2017 Dec;143:18-28
pubmed: 28826615
Sci Rep. 2016 Feb 25;6:21243
pubmed: 26912274
Lancet Neurol. 2016 Jul;15(8):857-868
pubmed: 27302364
Nature. 2008 Nov 6;456(7218):18-21
pubmed: 18987709
Am J Hum Genet. 2011 Jul 15;89(1):82-93
pubmed: 21737059
Hum Mol Genet. 2014 Aug 15;23(16):4420-32
pubmed: 24688116
Am J Hum Genet. 2012 Aug 10;91(2):224-37
pubmed: 22863193
PLoS One. 2012;7(1):e29848
pubmed: 22279548
Am J Hum Genet. 2013 Jun 6;92(6):841-53
pubmed: 23684009