Integrated spatial genomics reveals global architecture of single nuclei.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
02 2021
Historique:
received: 01 04 2020
accepted: 16 12 2020
pubmed: 29 1 2021
medline: 10 3 2021
entrez: 28 1 2021
Statut: ppublish

Résumé

Identifying the relationships between chromosome structures, nuclear bodies, chromatin states and gene expression is an overarching goal of nuclear-organization studies

Identifiants

pubmed: 33505024
doi: 10.1038/s41586-020-03126-2
pii: 10.1038/s41586-020-03126-2
pmc: PMC7878433
mid: NIHMS1655948
doi:

Substances chimiques

Chromatin 0
Genetic Markers 0
Histones 0
Lysine K3Z4F929H6

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

344-350

Subventions

Organisme : NIMH NIH HHS
ID : R01 MH116508
Pays : United States
Organisme : NIDA NIH HHS
ID : U01 DA047732
Pays : United States
Organisme : NIBIB NIH HHS
ID : U01 EB021240
Pays : United States
Organisme : NIDDK NIH HHS
ID : U01 DK127420
Pays : United States
Organisme : NIH HHS
ID : 4DN DA047732
Pays : United States
Organisme : NHLBI NIH HHS
ID : UG3 HL145609
Pays : United States

Commentaires et corrections

Type : CommentIn

Références

Dekker, J. et al. The 4D nucleome project. Nature 549, 219–226 (2017).
pubmed: 28905911 pmcid: 5617335 doi: 10.1038/nature23884
Kelsey, G., Stegle, O. & Reik, W. Single-cell epigenomics: recording the past and predicting the future. Science 358, 69–75 (2017).
pubmed: 28983045 doi: 10.1126/science.aan6826
Kempfer, R. & Pombo, A. Methods for mapping 3D chromosome architecture. Nat. Rev. Genet. 21, 207–226 (2020).
pubmed: 31848476 doi: 10.1038/s41576-019-0195-2
Zhu, C., Preissl, S. & Ren, B. Single-cell multimodal omics: the power of many. Nat. Methods 17, 11–14 (2020).
pubmed: 31907462 doi: 10.1038/s41592-019-0691-5
Finn, E. H. & Misteli, T. Molecular basis and biological function of variability in spatial genome organization. Science 365, eaaw9498 (2019).
pubmed: 31488662 pmcid: 7421438 doi: 10.1126/science.aaw9498
Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).
pubmed: 19815776 pmcid: 2858594
Quinodoz, S. A. et al. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell 174, 744–757 (2018).
pubmed: 29887377 pmcid: 6548320 doi: 10.1016/j.cell.2018.05.024
Wang, S. et al. Spatial organization of chromatin domains and compartments in single chromosomes. Science 353, 598–602 (2016).
pubmed: 27445307 pmcid: 4991974 doi: 10.1126/science.aaf8084
Bintu, B. et al. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362, eaau1783 (2018).
pubmed: 30361340 pmcid: 6535145 doi: 10.1126/science.aau1783
Nir, G. et al. Walking along chromosomes with super-resolution imaging, contact maps, and integrative modeling. PLoS Genet. 14, e1007872 (2018).
pubmed: 30586358 pmcid: 6324821 doi: 10.1371/journal.pgen.1007872
Cardozo Gizzi, A. M. et al. Microscopy-based chromosome conformation capture enables simultaneous visualization of genome organization and transcription in intact organisms. Mol. Cell 74, 212–222 (2019).
pubmed: 30795893 doi: 10.1016/j.molcel.2019.01.011
Finn, E. H. et al. Extensive heterogeneity and intrinsic variation in spatial genome organization. Cell 176, 1502–1515 (2019).
pubmed: 30799036 pmcid: 6408223 doi: 10.1016/j.cell.2019.01.020
Mateo, L. J. et al. Visualizing DNA folding and RNA in embryos at single-cell resolution. Nature 568, 49–54 (2019).
pubmed: 30886393 pmcid: 6556380 doi: 10.1038/s41586-019-1035-4
Nguyen, H. Q. et al. 3D mapping and accelerated super-resolution imaging of the human genome using in situ sequencing. Nat. Methods 17, 822–832 (2020).
pubmed: 32719531 pmcid: 7537785 doi: 10.1038/s41592-020-0890-0
Su, J.-H., Zheng, P., Kinrot, S. S., Bintu, B. & Zhuang, X. Genome-scale imaging of the 3d organization and transcriptional activity of chromatin. Cell 182, 1641–1659 (2020).
pubmed: 32822575 doi: 10.1016/j.cell.2020.07.032 pmcid: 7851072
Beliveau, B. J. et al. Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc. Natl Acad. Sci. USA 109, 21301–21306 (2012).
pubmed: 23236188 doi: 10.1073/pnas.1213818110 pmcid: 3535588
Lubeck, E., Coskun, A. F., Zhiyentayev, T., Ahmad, M. & Cai, L. Single-cell in situ RNA profiling by sequential hybridization. Nat. Methods 11, 360–361 (2014).
pubmed: 24681720 pmcid: 4085791 doi: 10.1038/nmeth.2892
Shah, S., Lubeck, E., Zhou, W. & Cai, L. In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus. Neuron 92, 342–357 (2016).
pubmed: 27764670 pmcid: 5087994 doi: 10.1016/j.neuron.2016.10.001
Takei, Y., Shah, S., Harvey, S., Qi, L. S. & Cai, L. Multiplexed dynamic imaging of genomic loci by combined CRISPR imaging and DNA sequential FISH. Biophys. J. 112, 1773–1776 (2017).
pubmed: 28427715 pmcid: 5425380 doi: 10.1016/j.bpj.2017.03.024
Shah, S. et al. Dynamics and spatial genomics of the nascent transcriptome by intron seqFISH. Cell 174, 363–376 (2018).
pubmed: 29887381 pmcid: 6046268 doi: 10.1016/j.cell.2018.05.035
Eng, C. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+. Nature 568, 235–239 (2019).
pubmed: 30911168 pmcid: 6544023 doi: 10.1038/s41586-019-1049-y
Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).
pubmed: 25858977 pmcid: 4662681 doi: 10.1126/science.aaa6090
Bonev, B. et al. Multiscale 3D genome rewiring during mouse neural development. Cell 171, 557–572.e24 (2017).
pubmed: 29053968 pmcid: 5651218 doi: 10.1016/j.cell.2017.09.043
Shen, Y. et al. A map of the cis-regulatory sequences in the mouse genome. Nature 488, 116–120 (2012).
pubmed: 22763441 pmcid: 4041622 doi: 10.1038/nature11243
Boettiger, A. N. et al. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529, 418–422 (2016).
pubmed: 26760202 pmcid: 4905822 doi: 10.1038/nature16496
van Steensel, B. & Belmont, A. S. Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell 169, 780–791 (2017).
pubmed: 28525751 pmcid: 5532494 doi: 10.1016/j.cell.2017.04.022
Spector, D. L. & Lamond, A. I. Nuclear speckles. Cold Spring Harb. Perspect. Biol. 3, a000646 (2011).
pubmed: 20926517 pmcid: 3039535 doi: 10.1101/cshperspect.a000646
Pederson, T. The nucleolus. Cold Spring Harb. Perspect. Biol. 3, a000638 (2011).
pubmed: 21106648 pmcid: 3039934
Ludwig, C. H. & Bintu, L. Mapping chromatin modifications at the single cell level. Development 146, dev170217 (2019).
pubmed: 31249006 pmcid: 6602357 doi: 10.1242/dev.170217
Söderberg, O. et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods 3, 995–1000 (2006).
pubmed: 17072308 doi: 10.1038/nmeth947
Agasti, S. S. et al. DNA-barcoded labeling probes for highly multiplexed Exchange-PAINT imaging. Chem. Sci. 8, 3080–3091 (2017).
pubmed: 28451377 pmcid: 5380918 doi: 10.1039/C6SC05420J
Guenatri, M., Bailly, D., Maison, C. & Almouzni, G. Mouse centric and pericentric satellite repeats form distinct functional heterochromatin. J. Cell Biol. 166, 493–505 (2004).
pubmed: 15302854 pmcid: 2172221 doi: 10.1083/jcb.200403109
Solovei, I. et al. Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell 137, 356–368 (2009).
pubmed: 19379699 doi: 10.1016/j.cell.2009.01.052
Mao, Y. S., Zhang, B. & Spector, D. L. Biogenesis and function of nuclear bodies. Trends Genet. 27, 295–306 (2011).
pubmed: 21680045 pmcid: 3144265 doi: 10.1016/j.tig.2011.05.006
Peric-Hupkes, D. et al. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol. Cell 38, 603–613 (2010).
pubmed: 20513434 pmcid: 5975946 doi: 10.1016/j.molcel.2010.03.016
Kind, J. et al. Genome-wide maps of nuclear lamina interactions in single human cells. Cell 163, 134–147 (2015).
pubmed: 26365489 pmcid: 4583798 doi: 10.1016/j.cell.2015.08.040
Chen, Y. et al. Mapping 3D genome organization relative to nuclear compartments using TSA-seq as a cytological ruler. J. Cell Biol. 217, 4025–4048 (2018).
pubmed: 30154186 pmcid: 6219710 doi: 10.1083/jcb.201807108
Gut, G., Herrmann, M. D. & Pelkmans, L. Multiplexed protein maps link subcellular organization to cellular states. Science 361, eaar7042 (2018).
pubmed: 30072512 doi: 10.1126/science.aar7042
McSwiggen, D. T., Mir, M., Darzacq, X. & Tjian, R. Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences. Genes Dev. 33, 1619–1634 (2019).
pubmed: 31594803 pmcid: 6942051 doi: 10.1101/gad.331520.119
Marks, H. et al. The transcriptional and epigenomic foundations of ground state pluripotency. Cell 149, 590–604 (2012).
pubmed: 22541430 pmcid: 3398752 doi: 10.1016/j.cell.2012.03.026
Singer, Z. S. et al. Dynamic heterogeneity and DNA methylation in embryonic stem cells. Mol. Cell 55, 319–331 (2014).
pubmed: 25038413 pmcid: 4104113 doi: 10.1016/j.molcel.2014.06.029
Kolodziejczyk, A. A. et al. Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation. Cell Stem Cell 17, 471–485 (2015).
pubmed: 26431182 pmcid: 4595712 doi: 10.1016/j.stem.2015.09.011
Tosolini, M. et al. Contrasting epigenetic states of heterochromatin in the different types of mouse pluripotent stem cells. Sci. Rep. 8, 5776 (2018).
pubmed: 29636490 pmcid: 5893598 doi: 10.1038/s41598-018-23822-4
van Mierlo, G. et al. Integrative proteomic profiling reveals PRC2-dependent epigenetic crosstalk maintains ground-state pluripotency. Cell Stem Cell 24, 123–137.e8 (2019).
pubmed: 30472157 doi: 10.1016/j.stem.2018.10.017
Gerlich, D. et al. Global chromosome positions are transmitted through mitosis in mammalian cells. Cell 112, 751–764 (2003).
pubmed: 12654243 doi: 10.1016/S0092-8674(03)00189-2
Walter, J., Schermelleh, L., Cremer, M., Tashiro, S. & Cremer, T. Chromosome order in HeLa cells changes during mitosis and early G1, but is stably maintained during subsequent interphase stages. J. Cell Biol. 160, 685–697 (2003).
pubmed: 12604593 pmcid: 2173351 doi: 10.1083/jcb.200211103
Thomson, I., Gilchrist, S., Bickmore, W. A. & Chubb, J. R. The radial positioning of chromatin is not inherited through mitosis but is established de novo in early G1. Curr. Biol. 14, 166–172 (2004).
pubmed: 14738741 doi: 10.1016/j.cub.2003.12.024
Essers, J. et al. Dynamics of relative chromosome position during the cell cycle. Mol. Biol. Cell 16, 769–775 (2005).
pubmed: 15574874 pmcid: 545910 doi: 10.1091/mbc.e04-10-0876
Hormoz, S. et al. inferring cell-state transition dynamics from lineage trees and endpoint single-cell measurements. Cell Syst. 3, 419–433 (2016).
pubmed: 27883889 pmcid: 5142829 doi: 10.1016/j.cels.2016.10.015
Cunningham, F. et al. Ensembl 2019. Nucleic Acids Res. 47, D745–D751 (2019).
pubmed: 30407521 doi: 10.1093/nar/gky1113
Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).
pubmed: 26000487 pmcid: 4441768
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286 pmcid: 3322381
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).
pubmed: 20003500 pmcid: 2803857 doi: 10.1186/1471-2105-10-421
Bao, W., Kojima, K. K. & Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 6, 11 (2015).
pubmed: 26045719 pmcid: 4455052 doi: 10.1186/s13100-015-0041-9
Eng, C. L., Shah, S., Thomassie, J. & Cai, L. Profiling the transcriptome with RNA SPOTs. Nat. Methods 14, 1153–1155 (2017).
pubmed: 29131163 pmcid: 5819366 doi: 10.1038/nmeth.4500
Cremer, C. et al. in Handbook of Computer Vision and Applications Vol. 3 (ed. Jahne, B. et al) 839–857 (Academic, 1999).
Croft, J. A. et al. Differences in the localization and morphology of chromosomes in the human nucleus. J. Cell Biol. 145, 1119–1131 (1999).
pubmed: 10366586 pmcid: 2133153 doi: 10.1083/jcb.145.6.1119
Esa, A. et al. Three-dimensional spectral precision distance microscopy of chromatin nanostructures after triple-colour DNA labelling: a study of the BCR region on chromosome 22 and the Philadelphia chromosome. J. Microsc. 199, 96–105 (2000).
pubmed: 10947902 doi: 10.1046/j.1365-2818.2000.00707.x
Cremer, M. et al. Multicolor 3D fluorescence in situ hybridization for imaging interphase chromosomes. Methods Mol. Biol. 463, 205–239 (2008).
pubmed: 18951171 doi: 10.1007/978-1-59745-406-3_15
Zhang, Z., Revyakin, A., Grimm, J. B., Lavis, L. D. & Tjian, R. Single-molecule tracking of the transcription cycle by sub-second RNA detection. eLife 3, e01775 (2014).
pubmed: 24473079 pmcid: 3901038 doi: 10.7554/eLife.01775
Chen, B. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479–1491 (2013).
pubmed: 24360272 pmcid: 3918502 doi: 10.1016/j.cell.2013.12.001
Nilsson, M. et al. Padlock probes: circularizing oligonucleotides for localized DNA detection. Science 265, 2085–2088 (1994).
pubmed: 7522346 doi: 10.1126/science.7522346
Rouhanifard, S. H. et al. ClampFISH detects individual nucleic acid molecules using click chemistry-based amplification. Nat. Biotechnol. (2018). https://doi.org/10.1038/nbt.4286
Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. Computer control of microscopes using μManager. Curr. Protoc. Mol. Biol. Ch. 14, Unit14.20 (2010).
Liu, S.-L. et al. Fast and high-accuracy localization for three-dimensional single-particle tracking. Sci. Rep. 3, 2462 (2013).
pubmed: 23955270 pmcid: 3746204 doi: 10.1038/srep02462
Parthasarathy, R. Rapid, accurate particle tracking by calculation of radial symmetry centers. Nat. Methods 9, 724–726 (2012).
pubmed: 22688415 doi: 10.1038/nmeth.2071
Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).
pubmed: 27467249 pmcid: 5846465 doi: 10.1016/j.cels.2016.07.002
Knight, P. A. & Ruiz, D. A fast algorithm for matrix balancing. IMA J. Numer. Anal. 33, 1029–1047 (2013).
doi: 10.1093/imanum/drs019
Stanyte, R. et al. Dynamics of sister chromatid resolution during cell cycle progression. J. Cell Biol. 217, 1985–2004 (2018).
pubmed: 29695489 pmcid: 5987726 doi: 10.1083/jcb.201801157
McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: uniform manifold approximation and projection. J. Open Source Softw. 3, 861 (2018).
doi: 10.21105/joss.00861
Nmezi, B. et al. Concentric organization of A- and B-type lamins predicts their distinct roles in the spatial organization and stability of the nuclear lamina. Proc. Natl Acad. Sci. USA 116, 4307–4315 (2019).
pubmed: 30765529 doi: 10.1073/pnas.1810070116 pmcid: 6410836
Suzuki, H., Kurihara, Y., Kanehisa, T. & Moriwaki, K. Variation in the distribution of silver-staining nucleolar organizer regions on the chromosomes of the wild mouse, Mus musculus. Mol. Biol. Evol. 7, 271–282 (1990).
pubmed: 1694258
Kurihara, Y., Suh, D. S., Suzuki, H. & Moriwaki, K. Chromosomal locations of Ag-NORs and clusters of ribosomal DNA in laboratory strains of mice. Mamm. Genome 5, 225–228 (1994).
pubmed: 8012113 doi: 10.1007/BF00360550
Strongin, D. E., Groudine, M. & Politz, J. C. R. Nucleolar tethering mediates pairing between the IgH and Myc loci. Nucleus 5, 474–481 (2014).
pubmed: 25482199 pmcid: 4164489 doi: 10.4161/nucl.36233
Jonkers, I., Kwak, H. & Lis, J. T. Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons. eLife 3, e02407 (2014).
pubmed: 24843027 pmcid: 4001325 doi: 10.7554/eLife.02407
Dileep, V. & Gilbert, D. M. Single-cell replication profiling to measure stochastic variation in mammalian replication timing. Nat. Commun. 9, 427 (2018).
pubmed: 29382831 pmcid: 5789892 doi: 10.1038/s41467-017-02800-w
Bacher, R. et al. SCnorm: robust normalization of single-cell RNA-seq data. Nat. Methods 14, 584–586 (2017).
pubmed: 28418000 pmcid: 5473255 doi: 10.1038/nmeth.4263
Vallejos, C. A., Risso, D., Scialdone, A., Dudoit, S. & Marioni, J. C. Normalizing single-cell RNA sequencing data: challenges and opportunities. Nat. Methods 14, 565–571 (2017).
pubmed: 28504683 pmcid: 5549838 doi: 10.1038/nmeth.4292
Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).
pubmed: 31870423 pmcid: 6927181 doi: 10.1186/s13059-019-1874-1
Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233 (2019).
pubmed: 30914743 pmcid: 6435756 doi: 10.1038/s41598-019-41695-z
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).
pubmed: 31178118 pmcid: 6687398 doi: 10.1016/j.cell.2019.05.031
Serrano, L. et al. The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation. Genes Dev. 27, 639–653 (2013).
pubmed: 23468428 pmcid: 3613611 doi: 10.1101/gad.211342.112
Hastie, T. & Stuetzle, W. Principal curves. J. Am. Stat. Assoc. 84, 502–516 (1989).
doi: 10.1080/01621459.1989.10478797
Haghverdi, L., Büttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods 13, 845–848 (2016).
pubmed: 27571553 doi: 10.1038/nmeth.3971
van Dijk, D. et al. Recovering gene interactions from single-cell data using data diffusion. Cell 174, 716–729 (2018).
pubmed: 29961576 pmcid: 6771278 doi: 10.1016/j.cell.2018.05.061
Angerer, P. et al. destiny: diffusion maps for large-scale single-cell data in R. Bioinformatics 32, 1241–1243 (2016).
pubmed: 26668002 doi: 10.1093/bioinformatics/btv715
Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).
pubmed: 14597658 pmcid: 403769 doi: 10.1101/gr.1239303
Lyon, M. F. X-chromosome inactivation: a repeat hypothesis. Cytogenet. Cell Genet. 80, 133–137 (1998).
pubmed: 9678347 doi: 10.1159/000014969
Meuleman, W. et al. Constitutive nuclear lamina-genome interactions are highly conserved and associated with A/T-rich sequence. Genome Res. 23, 270–280 (2013).
pubmed: 23124521 pmcid: 3561868 doi: 10.1101/gr.141028.112

Auteurs

Yodai Takei (Y)

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.

Jina Yun (J)

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.

Shiwei Zheng (S)

Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H.Chan School of Public Health, Boston, MA, USA.
Department of Genetics and Genomic Sciences and Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Noah Ollikainen (N)

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.

Nico Pierson (N)

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.

Jonathan White (J)

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.

Sheel Shah (S)

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.

Julian Thomassie (J)

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.

Shengbao Suo (S)

Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H.Chan School of Public Health, Boston, MA, USA.
Department of Genetics and Genomic Sciences and Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Chee-Huat Linus Eng (CL)

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.

Mitchell Guttman (M)

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.

Guo-Cheng Yuan (GC)

Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H.Chan School of Public Health, Boston, MA, USA.
Department of Genetics and Genomic Sciences and Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Long Cai (L)

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA. lcai@caltech.edu.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH