Integrated spatial genomics reveals global architecture of single nuclei.
Animals
Cell Compartmentation
/ genetics
Cell Line
Cell Nucleus
/ genetics
Chromatin
/ genetics
Chromosomes, Mammalian
/ genetics
Clone Cells
/ cytology
Fluorescent Antibody Technique
Genetic Markers
Genomics
/ methods
Histones
/ metabolism
Lysine
/ metabolism
Male
Mice
Mouse Embryonic Stem Cells
/ cytology
Single-Cell Analysis
/ methods
Time Factors
Transcriptome
/ genetics
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
02 2021
02 2021
Historique:
received:
01
04
2020
accepted:
16
12
2020
pubmed:
29
1
2021
medline:
10
3
2021
entrez:
28
1
2021
Statut:
ppublish
Résumé
Identifying the relationships between chromosome structures, nuclear bodies, chromatin states and gene expression is an overarching goal of nuclear-organization studies
Identifiants
pubmed: 33505024
doi: 10.1038/s41586-020-03126-2
pii: 10.1038/s41586-020-03126-2
pmc: PMC7878433
mid: NIHMS1655948
doi:
Substances chimiques
Chromatin
0
Genetic Markers
0
Histones
0
Lysine
K3Z4F929H6
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
344-350Subventions
Organisme : NIMH NIH HHS
ID : R01 MH116508
Pays : United States
Organisme : NIDA NIH HHS
ID : U01 DA047732
Pays : United States
Organisme : NIBIB NIH HHS
ID : U01 EB021240
Pays : United States
Organisme : NIDDK NIH HHS
ID : U01 DK127420
Pays : United States
Organisme : NIH HHS
ID : 4DN DA047732
Pays : United States
Organisme : NHLBI NIH HHS
ID : UG3 HL145609
Pays : United States
Commentaires et corrections
Type : CommentIn
Références
Dekker, J. et al. The 4D nucleome project. Nature 549, 219–226 (2017).
pubmed: 28905911
pmcid: 5617335
doi: 10.1038/nature23884
Kelsey, G., Stegle, O. & Reik, W. Single-cell epigenomics: recording the past and predicting the future. Science 358, 69–75 (2017).
pubmed: 28983045
doi: 10.1126/science.aan6826
Kempfer, R. & Pombo, A. Methods for mapping 3D chromosome architecture. Nat. Rev. Genet. 21, 207–226 (2020).
pubmed: 31848476
doi: 10.1038/s41576-019-0195-2
Zhu, C., Preissl, S. & Ren, B. Single-cell multimodal omics: the power of many. Nat. Methods 17, 11–14 (2020).
pubmed: 31907462
doi: 10.1038/s41592-019-0691-5
Finn, E. H. & Misteli, T. Molecular basis and biological function of variability in spatial genome organization. Science 365, eaaw9498 (2019).
pubmed: 31488662
pmcid: 7421438
doi: 10.1126/science.aaw9498
Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).
pubmed: 19815776
pmcid: 2858594
Quinodoz, S. A. et al. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell 174, 744–757 (2018).
pubmed: 29887377
pmcid: 6548320
doi: 10.1016/j.cell.2018.05.024
Wang, S. et al. Spatial organization of chromatin domains and compartments in single chromosomes. Science 353, 598–602 (2016).
pubmed: 27445307
pmcid: 4991974
doi: 10.1126/science.aaf8084
Bintu, B. et al. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362, eaau1783 (2018).
pubmed: 30361340
pmcid: 6535145
doi: 10.1126/science.aau1783
Nir, G. et al. Walking along chromosomes with super-resolution imaging, contact maps, and integrative modeling. PLoS Genet. 14, e1007872 (2018).
pubmed: 30586358
pmcid: 6324821
doi: 10.1371/journal.pgen.1007872
Cardozo Gizzi, A. M. et al. Microscopy-based chromosome conformation capture enables simultaneous visualization of genome organization and transcription in intact organisms. Mol. Cell 74, 212–222 (2019).
pubmed: 30795893
doi: 10.1016/j.molcel.2019.01.011
Finn, E. H. et al. Extensive heterogeneity and intrinsic variation in spatial genome organization. Cell 176, 1502–1515 (2019).
pubmed: 30799036
pmcid: 6408223
doi: 10.1016/j.cell.2019.01.020
Mateo, L. J. et al. Visualizing DNA folding and RNA in embryos at single-cell resolution. Nature 568, 49–54 (2019).
pubmed: 30886393
pmcid: 6556380
doi: 10.1038/s41586-019-1035-4
Nguyen, H. Q. et al. 3D mapping and accelerated super-resolution imaging of the human genome using in situ sequencing. Nat. Methods 17, 822–832 (2020).
pubmed: 32719531
pmcid: 7537785
doi: 10.1038/s41592-020-0890-0
Su, J.-H., Zheng, P., Kinrot, S. S., Bintu, B. & Zhuang, X. Genome-scale imaging of the 3d organization and transcriptional activity of chromatin. Cell 182, 1641–1659 (2020).
pubmed: 32822575
doi: 10.1016/j.cell.2020.07.032
pmcid: 7851072
Beliveau, B. J. et al. Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc. Natl Acad. Sci. USA 109, 21301–21306 (2012).
pubmed: 23236188
doi: 10.1073/pnas.1213818110
pmcid: 3535588
Lubeck, E., Coskun, A. F., Zhiyentayev, T., Ahmad, M. & Cai, L. Single-cell in situ RNA profiling by sequential hybridization. Nat. Methods 11, 360–361 (2014).
pubmed: 24681720
pmcid: 4085791
doi: 10.1038/nmeth.2892
Shah, S., Lubeck, E., Zhou, W. & Cai, L. In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus. Neuron 92, 342–357 (2016).
pubmed: 27764670
pmcid: 5087994
doi: 10.1016/j.neuron.2016.10.001
Takei, Y., Shah, S., Harvey, S., Qi, L. S. & Cai, L. Multiplexed dynamic imaging of genomic loci by combined CRISPR imaging and DNA sequential FISH. Biophys. J. 112, 1773–1776 (2017).
pubmed: 28427715
pmcid: 5425380
doi: 10.1016/j.bpj.2017.03.024
Shah, S. et al. Dynamics and spatial genomics of the nascent transcriptome by intron seqFISH. Cell 174, 363–376 (2018).
pubmed: 29887381
pmcid: 6046268
doi: 10.1016/j.cell.2018.05.035
Eng, C. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+. Nature 568, 235–239 (2019).
pubmed: 30911168
pmcid: 6544023
doi: 10.1038/s41586-019-1049-y
Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).
pubmed: 25858977
pmcid: 4662681
doi: 10.1126/science.aaa6090
Bonev, B. et al. Multiscale 3D genome rewiring during mouse neural development. Cell 171, 557–572.e24 (2017).
pubmed: 29053968
pmcid: 5651218
doi: 10.1016/j.cell.2017.09.043
Shen, Y. et al. A map of the cis-regulatory sequences in the mouse genome. Nature 488, 116–120 (2012).
pubmed: 22763441
pmcid: 4041622
doi: 10.1038/nature11243
Boettiger, A. N. et al. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529, 418–422 (2016).
pubmed: 26760202
pmcid: 4905822
doi: 10.1038/nature16496
van Steensel, B. & Belmont, A. S. Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell 169, 780–791 (2017).
pubmed: 28525751
pmcid: 5532494
doi: 10.1016/j.cell.2017.04.022
Spector, D. L. & Lamond, A. I. Nuclear speckles. Cold Spring Harb. Perspect. Biol. 3, a000646 (2011).
pubmed: 20926517
pmcid: 3039535
doi: 10.1101/cshperspect.a000646
Pederson, T. The nucleolus. Cold Spring Harb. Perspect. Biol. 3, a000638 (2011).
pubmed: 21106648
pmcid: 3039934
Ludwig, C. H. & Bintu, L. Mapping chromatin modifications at the single cell level. Development 146, dev170217 (2019).
pubmed: 31249006
pmcid: 6602357
doi: 10.1242/dev.170217
Söderberg, O. et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods 3, 995–1000 (2006).
pubmed: 17072308
doi: 10.1038/nmeth947
Agasti, S. S. et al. DNA-barcoded labeling probes for highly multiplexed Exchange-PAINT imaging. Chem. Sci. 8, 3080–3091 (2017).
pubmed: 28451377
pmcid: 5380918
doi: 10.1039/C6SC05420J
Guenatri, M., Bailly, D., Maison, C. & Almouzni, G. Mouse centric and pericentric satellite repeats form distinct functional heterochromatin. J. Cell Biol. 166, 493–505 (2004).
pubmed: 15302854
pmcid: 2172221
doi: 10.1083/jcb.200403109
Solovei, I. et al. Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell 137, 356–368 (2009).
pubmed: 19379699
doi: 10.1016/j.cell.2009.01.052
Mao, Y. S., Zhang, B. & Spector, D. L. Biogenesis and function of nuclear bodies. Trends Genet. 27, 295–306 (2011).
pubmed: 21680045
pmcid: 3144265
doi: 10.1016/j.tig.2011.05.006
Peric-Hupkes, D. et al. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol. Cell 38, 603–613 (2010).
pubmed: 20513434
pmcid: 5975946
doi: 10.1016/j.molcel.2010.03.016
Kind, J. et al. Genome-wide maps of nuclear lamina interactions in single human cells. Cell 163, 134–147 (2015).
pubmed: 26365489
pmcid: 4583798
doi: 10.1016/j.cell.2015.08.040
Chen, Y. et al. Mapping 3D genome organization relative to nuclear compartments using TSA-seq as a cytological ruler. J. Cell Biol. 217, 4025–4048 (2018).
pubmed: 30154186
pmcid: 6219710
doi: 10.1083/jcb.201807108
Gut, G., Herrmann, M. D. & Pelkmans, L. Multiplexed protein maps link subcellular organization to cellular states. Science 361, eaar7042 (2018).
pubmed: 30072512
doi: 10.1126/science.aar7042
McSwiggen, D. T., Mir, M., Darzacq, X. & Tjian, R. Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences. Genes Dev. 33, 1619–1634 (2019).
pubmed: 31594803
pmcid: 6942051
doi: 10.1101/gad.331520.119
Marks, H. et al. The transcriptional and epigenomic foundations of ground state pluripotency. Cell 149, 590–604 (2012).
pubmed: 22541430
pmcid: 3398752
doi: 10.1016/j.cell.2012.03.026
Singer, Z. S. et al. Dynamic heterogeneity and DNA methylation in embryonic stem cells. Mol. Cell 55, 319–331 (2014).
pubmed: 25038413
pmcid: 4104113
doi: 10.1016/j.molcel.2014.06.029
Kolodziejczyk, A. A. et al. Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation. Cell Stem Cell 17, 471–485 (2015).
pubmed: 26431182
pmcid: 4595712
doi: 10.1016/j.stem.2015.09.011
Tosolini, M. et al. Contrasting epigenetic states of heterochromatin in the different types of mouse pluripotent stem cells. Sci. Rep. 8, 5776 (2018).
pubmed: 29636490
pmcid: 5893598
doi: 10.1038/s41598-018-23822-4
van Mierlo, G. et al. Integrative proteomic profiling reveals PRC2-dependent epigenetic crosstalk maintains ground-state pluripotency. Cell Stem Cell 24, 123–137.e8 (2019).
pubmed: 30472157
doi: 10.1016/j.stem.2018.10.017
Gerlich, D. et al. Global chromosome positions are transmitted through mitosis in mammalian cells. Cell 112, 751–764 (2003).
pubmed: 12654243
doi: 10.1016/S0092-8674(03)00189-2
Walter, J., Schermelleh, L., Cremer, M., Tashiro, S. & Cremer, T. Chromosome order in HeLa cells changes during mitosis and early G1, but is stably maintained during subsequent interphase stages. J. Cell Biol. 160, 685–697 (2003).
pubmed: 12604593
pmcid: 2173351
doi: 10.1083/jcb.200211103
Thomson, I., Gilchrist, S., Bickmore, W. A. & Chubb, J. R. The radial positioning of chromatin is not inherited through mitosis but is established de novo in early G1. Curr. Biol. 14, 166–172 (2004).
pubmed: 14738741
doi: 10.1016/j.cub.2003.12.024
Essers, J. et al. Dynamics of relative chromosome position during the cell cycle. Mol. Biol. Cell 16, 769–775 (2005).
pubmed: 15574874
pmcid: 545910
doi: 10.1091/mbc.e04-10-0876
Hormoz, S. et al. inferring cell-state transition dynamics from lineage trees and endpoint single-cell measurements. Cell Syst. 3, 419–433 (2016).
pubmed: 27883889
pmcid: 5142829
doi: 10.1016/j.cels.2016.10.015
Cunningham, F. et al. Ensembl 2019. Nucleic Acids Res. 47, D745–D751 (2019).
pubmed: 30407521
doi: 10.1093/nar/gky1113
Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).
pubmed: 26000487
pmcid: 4441768
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286
pmcid: 3322381
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).
pubmed: 20003500
pmcid: 2803857
doi: 10.1186/1471-2105-10-421
Bao, W., Kojima, K. K. & Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 6, 11 (2015).
pubmed: 26045719
pmcid: 4455052
doi: 10.1186/s13100-015-0041-9
Eng, C. L., Shah, S., Thomassie, J. & Cai, L. Profiling the transcriptome with RNA SPOTs. Nat. Methods 14, 1153–1155 (2017).
pubmed: 29131163
pmcid: 5819366
doi: 10.1038/nmeth.4500
Cremer, C. et al. in Handbook of Computer Vision and Applications Vol. 3 (ed. Jahne, B. et al) 839–857 (Academic, 1999).
Croft, J. A. et al. Differences in the localization and morphology of chromosomes in the human nucleus. J. Cell Biol. 145, 1119–1131 (1999).
pubmed: 10366586
pmcid: 2133153
doi: 10.1083/jcb.145.6.1119
Esa, A. et al. Three-dimensional spectral precision distance microscopy of chromatin nanostructures after triple-colour DNA labelling: a study of the BCR region on chromosome 22 and the Philadelphia chromosome. J. Microsc. 199, 96–105 (2000).
pubmed: 10947902
doi: 10.1046/j.1365-2818.2000.00707.x
Cremer, M. et al. Multicolor 3D fluorescence in situ hybridization for imaging interphase chromosomes. Methods Mol. Biol. 463, 205–239 (2008).
pubmed: 18951171
doi: 10.1007/978-1-59745-406-3_15
Zhang, Z., Revyakin, A., Grimm, J. B., Lavis, L. D. & Tjian, R. Single-molecule tracking of the transcription cycle by sub-second RNA detection. eLife 3, e01775 (2014).
pubmed: 24473079
pmcid: 3901038
doi: 10.7554/eLife.01775
Chen, B. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479–1491 (2013).
pubmed: 24360272
pmcid: 3918502
doi: 10.1016/j.cell.2013.12.001
Nilsson, M. et al. Padlock probes: circularizing oligonucleotides for localized DNA detection. Science 265, 2085–2088 (1994).
pubmed: 7522346
doi: 10.1126/science.7522346
Rouhanifard, S. H. et al. ClampFISH detects individual nucleic acid molecules using click chemistry-based amplification. Nat. Biotechnol. (2018). https://doi.org/10.1038/nbt.4286
Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. Computer control of microscopes using μManager. Curr. Protoc. Mol. Biol. Ch. 14, Unit14.20 (2010).
Liu, S.-L. et al. Fast and high-accuracy localization for three-dimensional single-particle tracking. Sci. Rep. 3, 2462 (2013).
pubmed: 23955270
pmcid: 3746204
doi: 10.1038/srep02462
Parthasarathy, R. Rapid, accurate particle tracking by calculation of radial symmetry centers. Nat. Methods 9, 724–726 (2012).
pubmed: 22688415
doi: 10.1038/nmeth.2071
Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).
pubmed: 27467249
pmcid: 5846465
doi: 10.1016/j.cels.2016.07.002
Knight, P. A. & Ruiz, D. A fast algorithm for matrix balancing. IMA J. Numer. Anal. 33, 1029–1047 (2013).
doi: 10.1093/imanum/drs019
Stanyte, R. et al. Dynamics of sister chromatid resolution during cell cycle progression. J. Cell Biol. 217, 1985–2004 (2018).
pubmed: 29695489
pmcid: 5987726
doi: 10.1083/jcb.201801157
McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: uniform manifold approximation and projection. J. Open Source Softw. 3, 861 (2018).
doi: 10.21105/joss.00861
Nmezi, B. et al. Concentric organization of A- and B-type lamins predicts their distinct roles in the spatial organization and stability of the nuclear lamina. Proc. Natl Acad. Sci. USA 116, 4307–4315 (2019).
pubmed: 30765529
doi: 10.1073/pnas.1810070116
pmcid: 6410836
Suzuki, H., Kurihara, Y., Kanehisa, T. & Moriwaki, K. Variation in the distribution of silver-staining nucleolar organizer regions on the chromosomes of the wild mouse, Mus musculus. Mol. Biol. Evol. 7, 271–282 (1990).
pubmed: 1694258
Kurihara, Y., Suh, D. S., Suzuki, H. & Moriwaki, K. Chromosomal locations of Ag-NORs and clusters of ribosomal DNA in laboratory strains of mice. Mamm. Genome 5, 225–228 (1994).
pubmed: 8012113
doi: 10.1007/BF00360550
Strongin, D. E., Groudine, M. & Politz, J. C. R. Nucleolar tethering mediates pairing between the IgH and Myc loci. Nucleus 5, 474–481 (2014).
pubmed: 25482199
pmcid: 4164489
doi: 10.4161/nucl.36233
Jonkers, I., Kwak, H. & Lis, J. T. Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons. eLife 3, e02407 (2014).
pubmed: 24843027
pmcid: 4001325
doi: 10.7554/eLife.02407
Dileep, V. & Gilbert, D. M. Single-cell replication profiling to measure stochastic variation in mammalian replication timing. Nat. Commun. 9, 427 (2018).
pubmed: 29382831
pmcid: 5789892
doi: 10.1038/s41467-017-02800-w
Bacher, R. et al. SCnorm: robust normalization of single-cell RNA-seq data. Nat. Methods 14, 584–586 (2017).
pubmed: 28418000
pmcid: 5473255
doi: 10.1038/nmeth.4263
Vallejos, C. A., Risso, D., Scialdone, A., Dudoit, S. & Marioni, J. C. Normalizing single-cell RNA sequencing data: challenges and opportunities. Nat. Methods 14, 565–571 (2017).
pubmed: 28504683
pmcid: 5549838
doi: 10.1038/nmeth.4292
Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).
pubmed: 31870423
pmcid: 6927181
doi: 10.1186/s13059-019-1874-1
Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233 (2019).
pubmed: 30914743
pmcid: 6435756
doi: 10.1038/s41598-019-41695-z
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).
pubmed: 31178118
pmcid: 6687398
doi: 10.1016/j.cell.2019.05.031
Serrano, L. et al. The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation. Genes Dev. 27, 639–653 (2013).
pubmed: 23468428
pmcid: 3613611
doi: 10.1101/gad.211342.112
Hastie, T. & Stuetzle, W. Principal curves. J. Am. Stat. Assoc. 84, 502–516 (1989).
doi: 10.1080/01621459.1989.10478797
Haghverdi, L., Büttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods 13, 845–848 (2016).
pubmed: 27571553
doi: 10.1038/nmeth.3971
van Dijk, D. et al. Recovering gene interactions from single-cell data using data diffusion. Cell 174, 716–729 (2018).
pubmed: 29961576
pmcid: 6771278
doi: 10.1016/j.cell.2018.05.061
Angerer, P. et al. destiny: diffusion maps for large-scale single-cell data in R. Bioinformatics 32, 1241–1243 (2016).
pubmed: 26668002
doi: 10.1093/bioinformatics/btv715
Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).
pubmed: 14597658
pmcid: 403769
doi: 10.1101/gr.1239303
Lyon, M. F. X-chromosome inactivation: a repeat hypothesis. Cytogenet. Cell Genet. 80, 133–137 (1998).
pubmed: 9678347
doi: 10.1159/000014969
Meuleman, W. et al. Constitutive nuclear lamina-genome interactions are highly conserved and associated with A/T-rich sequence. Genome Res. 23, 270–280 (2013).
pubmed: 23124521
pmcid: 3561868
doi: 10.1101/gr.141028.112