Characterizing extracellular diffusion properties using diffusion-weighted MRS of sucrose injected in mouse brain.
apparent diffusion coefficient
brain
diffusion
double diffusion encoding
extracellular space
tortuosity
Journal
NMR in biomedicine
ISSN: 1099-1492
Titre abrégé: NMR Biomed
Pays: England
ID NLM: 8915233
Informations de publication
Date de publication:
04 2021
04 2021
Historique:
received:
23
07
2020
accepted:
04
01
2021
pubmed:
29
1
2021
medline:
15
12
2021
entrez:
28
1
2021
Statut:
ppublish
Résumé
Brain water and some critically important energy metabolites, such as lactate or glucose, are present in both intracellular and extracellular spaces (ICS/ECS) at significant levels. This ubiquitous nature makes diffusion MRI/MRS data sometimes difficult to interpret and model. While it is possible to glean information on the diffusion properties in ICS by measuring the diffusion of purely intracellular endogenous metabolites (such as NAA), the absence of endogenous markers specific to ECS hampers similar analyses in this compartment. In past experiments, exogenous probes have therefore been injected into the brain to assess their apparent diffusion coefficient (ADC) and thus estimate tortuosity in ECS. Here, we use a similar approach in mice by injecting sucrose, a well-known ECS marker, in either the lateral ventricles or directly in the prefrontal cortex. For the first time, we propose a thorough characterization of ECS diffusion properties encompassing (1) short-range restriction by looking at signal attenuation at high b values, (2) tortuosity and long-range restriction by measuring ADC time-dependence at long diffusion times and (3) microscopic anisotropy by performing double diffusion encoding (DDE) measurements. Overall, sucrose diffusion behavior is strikingly different from that of intracellular metabolites. Acquisitions at high b values not only reveal faster sucrose diffusion but also some sensitivity to restriction, suggesting that the diffusion in ECS is not fully Gaussian at high b. The time evolution of the ADC at long diffusion times shows that the tortuosity regime is not reached yet in the case of sucrose, while DDE experiments suggest that it is not trapped in elongated structures. No major difference in sucrose diffusion properties is reported between the two investigated routes of injection and brain regions. These original experimental insights should be useful to better interpret and model the diffusion signal of molecules that are distributed between ICS and ECS compartments.
Identifiants
pubmed: 33506506
doi: 10.1002/nbm.4478
pmc: PMC7988537
doi:
Substances chimiques
Sucrose
57-50-1
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e4478Informations de copyright
© 2021 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
Références
J Neurophysiol. 1997 Aug;78(2):912-9
pubmed: 9307124
Am J Physiol. 1970 Nov;219(5):1528-33
pubmed: 4990676
Methods. 2020 Mar 1;174:91-99
pubmed: 30862507
Neuroimage. 2020 Feb 15;207:116399
pubmed: 31778817
J Neurosci. 2018 Oct 31;38(44):9355-9363
pubmed: 30381427
Neurochem Int. 2004 Sep;45(4):467-77
pubmed: 15186912
Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8306-11
pubmed: 10890922
Biophys J. 2004 Sep;87(3):1606-17
pubmed: 15345540
J Theor Biol. 2005 Jun 21;234(4):525-36
pubmed: 15808873
Magn Reson Med. 2003 Sep;50(3):493-9
pubmed: 12939756
J Physiol. 2009 Aug 15;587(Pt 16):4029-49
pubmed: 19546165
Cell. 2018 Feb 22;172(5):1108-1121.e15
pubmed: 29474910
NMR Biomed. 2010 Aug;23(7):757-80
pubmed: 20690130
Acta Neuropathol. 1992;83(3):233-9
pubmed: 1373020
Biochemistry. 1987 Feb 10;26(3):824-32
pubmed: 3567148
Comput Vis Sci. 2011 Oct 1;14(7):309-325
pubmed: 23172993
Neuroimage. 2018 Nov 15;182:329-342
pubmed: 28818694
Acta Physiol Scand. 1992 Dec;146(4):473-84
pubmed: 1492565
NMR Biomed. 2019 Apr;32(4):e3841
pubmed: 29193413
Magn Reson Med. 2001 May;45(5):801-10
pubmed: 11323806
Trends Neurosci. 1998 May;21(5):207-15
pubmed: 9610885
Science. 1990 Aug 10;249(4969):674-7
pubmed: 2382142
J Physiol. 1981 Dec;321:225-57
pubmed: 7338810
Neuroimage. 2018 Nov 15;182:500-510
pubmed: 29253652
Biophys J. 2010 Aug 9;99(4):1284-91
pubmed: 20713014
Neuroscience. 2004;129(4):861-76
pubmed: 15561404
J Control Release. 2015 Jan 10;197:78-86
pubmed: 25449807
NMR Biomed. 2017 Oct;30(10):
pubmed: 28796319
Biophys J. 1993 Dec;65(6):2277-90
pubmed: 7508761
Magn Reson Med. 2003 Oct;50(4):717-26
pubmed: 14523957
Neuroimage. 2016 Apr 1;129:414-427
pubmed: 26804782
Neuroimage. 2018 Nov 1;181:314-322
pubmed: 30005917
PLoS One. 2017 Oct 2;12(10):e0185232
pubmed: 28968410
Sci Rep. 2017 Feb 09;7:42022
pubmed: 28181535
Eur Ann Otorhinolaryngol Head Neck Dis. 2011 Dec;128(6):309-16
pubmed: 22100360
J Magn Reson. 2009 Jul;199(1):56-67
pubmed: 19398210
J Cereb Blood Flow Metab. 1997 Feb;17(2):191-203
pubmed: 9040499
Cell. 2011 Mar 4;144(5):810-23
pubmed: 21376239
Neuroscience. 1993 Jul;55(2):339-51
pubmed: 8377929
Ann N Y Acad Sci. 1988;531:29-39
pubmed: 3382143
Biophys J. 2017 Nov 21;113(10):2133-2142
pubmed: 28755756
Neurol Med Chir (Tokyo). 2016 Jul 15;56(7):416-41
pubmed: 27245177
Magn Reson Med. 1999 Apr;41(4):649-56
pubmed: 10332839
Magn Reson Med. 2005 May;53(5):1040-5
pubmed: 15844159
Nat Commun. 2018 Nov 19;9(1):4878
pubmed: 30451853
Magn Reson Med. 2018 Jun;79(6):3172-3193
pubmed: 29493816
Magn Reson Med. 1993 Dec;30(6):672-9
pubmed: 8139448
Rev Neurosci. 2015;26(5):489-506
pubmed: 26103627
Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10625-9
pubmed: 7938003
Neuroimage. 2019 Apr 1;189:543-550
pubmed: 30659959
Magn Reson Med. 2004 Nov;52(5):1052-9
pubmed: 15508157
Phys Rev B Condens Matter. 1995 Jun 1;51(21):15074-15078
pubmed: 9978461
Magn Reson Med. 2017 Apr;77(4):1390-1398
pubmed: 27018415
Magn Reson Med. 2017 Apr;77(4):1639-1649
pubmed: 27080726
Brain Struct Funct. 2016 Apr;221(3):1245-54
pubmed: 25520054
Magn Reson Med. 1990 Jun;14(3):435-44
pubmed: 2355827
Biophys J. 2009 Mar 18;96(6):2382-90
pubmed: 19289063
Prog Brain Res. 2000;125:155-78
pubmed: 11098655
Proc Natl Acad Sci U S A. 2016 Jun 14;113(24):6671-6
pubmed: 27226303
J Neurophysiol. 1995 Aug;74(2):565-73
pubmed: 7472364
Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5088-93
pubmed: 24706873
Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8416-21
pubmed: 18541909
Magn Reson Med. 1998 Jul;40(1):1-13
pubmed: 9660547
Nat Nanotechnol. 2017 Mar;12(3):238-243
pubmed: 27870840
J Cereb Blood Flow Metab. 2000 Apr;20(4):736-46
pubmed: 10779018
J Chem Phys. 2008 Apr 21;128(15):154511
pubmed: 18433239
Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):5567-72
pubmed: 16567637
Glycobiology. 1996 Jul;6(5):489-92
pubmed: 8877368
Sci Rep. 2015 Sep 29;5:14527
pubmed: 26417723
Exp Neurol. 1970 Apr;27(1):101-14
pubmed: 5439581
Nat Commun. 2014 Sep 17;5:4958
pubmed: 25229942
NMR Biomed. 2021 Apr;34(4):e4478
pubmed: 33506506