Coordinating cell polarization and morphogenesis through mechanical feedback.


Journal

PLoS computational biology
ISSN: 1553-7358
Titre abrégé: PLoS Comput Biol
Pays: United States
ID NLM: 101238922

Informations de publication

Date de publication:
01 2021
Historique:
received: 15 05 2020
accepted: 21 12 2020
revised: 09 02 2021
pubmed: 29 1 2021
medline: 18 5 2021
entrez: 28 1 2021
Statut: epublish

Résumé

Many cellular processes require cell polarization to be maintained as the cell changes shape, grows or moves. Without feedback mechanisms relaying information about cell shape to the polarity molecular machinery, the coordination between cell polarization and morphogenesis, movement or growth would not be possible. Here we theoretically and computationally study the role of a genetically-encoded mechanical feedback (in the Cell Wall Integrity pathway) as a potential coordination mechanism between cell morphogenesis and polarity during budding yeast mating projection growth. We developed a coarse-grained continuum description of the coupled dynamics of cell polarization and morphogenesis as well as 3D stochastic simulations of the molecular polarization machinery in the evolving cell shape. Both theoretical approaches show that in the absence of mechanical feedback (or in the presence of weak feedback), cell polarity cannot be maintained at the projection tip during growth, with the polarization cap wandering off the projection tip, arresting morphogenesis. In contrast, for mechanical feedback strengths above a threshold, cells can robustly maintain cell polarization at the tip and simultaneously sustain mating projection growth. These results indicate that the mechanical feedback encoded in the Cell Wall Integrity pathway can provide important positional information to the molecular machinery in the cell, thereby enabling the coordination of cell polarization and morphogenesis.

Identifiants

pubmed: 33507956
doi: 10.1371/journal.pcbi.1007971
pii: PCOMPBIOL-D-20-00830
pmc: PMC7872284
doi:

Substances chimiques

cdc42 GTP-Binding Protein, Saccharomyces cerevisiae EC 3.6.5.2

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

e1007971

Subventions

Organisme : NIGMS NIH HHS
ID : R01 GM113241
Pays : United States
Organisme : NCI NIH HHS
ID : T32 CA009370
Pays : United States

Déclaration de conflit d'intérêts

The authors have declared that no competing interests exist.

Références

Nat Phys. 2019 Jul 2;15(3):293-300
pubmed: 31327978
Plant Cell. 2010 Aug;22(8):2579-93
pubmed: 20699395
Trends Plant Sci. 2009 Sep;14(9):467-78
pubmed: 19717328
Science. 2013 Jun 7;340(6137):1185-9
pubmed: 23744939
Open Biol. 2013 Mar 06;3(3):130008
pubmed: 23466674
Mol Biol Cell. 1993 Dec;4(12):1307-16
pubmed: 8167411
Annu Rev Biochem. 2011;80:101-23
pubmed: 21438688
Plant Physiol. 2018 Jan;176(1):41-56
pubmed: 29229695
J Cell Sci. 2000 Feb;113 ( Pt 3):365-75
pubmed: 10639324
PLoS Comput Biol. 2018 Jan 18;14(1):e1005940
pubmed: 29346368
Mol Biol Cell. 2010 May 15;21(10):1737-52
pubmed: 20335504
Mol Cell Biol. 1990 May;10(5):2202-13
pubmed: 2183023
PLoS Comput Biol. 2011 Nov;7(11):e1002271
pubmed: 22102805
Biophys J. 2011 Oct 19;101(8):1844-53
pubmed: 22004737
Nat Rev Microbiol. 2005 Aug;3(8):601-10
pubmed: 16012516
J Cell Biol. 2004 Sep 13;166(6):889-900
pubmed: 15353546
Curr Biol. 2018 Oct 22;28(20):3342-3351.e3
pubmed: 30318352
Sci Adv. 2018 Nov 21;4(11):eaau1354
pubmed: 30474058
J Bacteriol. 1976 Jul;127(1):610-8
pubmed: 776942
Curr Biol. 2009 Dec 29;19(24):2102-7
pubmed: 20022245
Curr Biol. 2013 Jan 7;23(1):32-41
pubmed: 23200992
Nat Cell Biol. 2015 Jun;17(6):749-58
pubmed: 25938814
PLoS One. 2008;3(12):e3865
pubmed: 19052645
Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12907-11
pubmed: 7528927
Cell. 2007 Apr 20;129(2):411-22
pubmed: 17448998
Microbiol Mol Biol Rev. 2005 Dec;69(4):544-64
pubmed: 16339735
PLoS Comput Biol. 2018 Jun 11;14(6):e1006241
pubmed: 29889845
Science. 2003 Feb 21;299(5610):1231-5
pubmed: 12560471
Mol Biol Cell. 2017 Feb 1;28(3):370-380
pubmed: 28137950
Genetics. 2012 Jun;191(2):347-87
pubmed: 22701052
Genes Cells. 2002 Jan;7(1):1-9
pubmed: 11856368
Microbiol Mol Biol Rev. 2007 Mar;71(1):48-96
pubmed: 17347519
Trends Cell Biol. 1992 Jan;2(1):22-9
pubmed: 14731634
PLoS One. 2014 Oct 16;9(10):e109780
pubmed: 25329559
Nature. 2008 Aug 14;454(7206):886-9
pubmed: 18704086
J Cell Biol. 2013 Feb 18;200(4):407-18
pubmed: 23401000
Curr Biol. 2012 Jan 24;22(2):R48-51
pubmed: 22280905
Nat Commun. 2013;4:1807
pubmed: 23651995
Science. 1997 Apr 4;276(5309):118-22
pubmed: 9082982
Dev Cell. 2014 Mar 10;28(5):534-46
pubmed: 24636258
Dev Cell. 2018 Apr 23;45(2):170-182.e7
pubmed: 29689193
J Cell Biol. 1999 Mar 22;144(6):1187-202
pubmed: 10087263
Dev Cell. 2004 Sep;7(3):413-24
pubmed: 15363415
J Cell Sci. 2017 Apr 1;130(7):1201-1207
pubmed: 28365593
Dev Cell. 2015 Nov 23;35(4):471-82
pubmed: 26609960
Science. 2011 Nov 25;334(6059):1137-41
pubmed: 22021673
Mol Cell Biol. 1995 Oct;15(10):5671-81
pubmed: 7565718
Genetics. 2011 Dec;189(4):1145-75
pubmed: 22174182
J R Soc Interface. 2020 Jun;17(167):20200177
pubmed: 32486953
Int J Dev Biol. 2006;50(2-3):209-22
pubmed: 16479489
FEBS Lett. 2008 Apr 30;582(10):1437-43
pubmed: 18381072
J Theor Biol. 2006 Feb 21;238(4):937-48
pubmed: 16105670
Mol Cell. 2000 May;5(5):853-64
pubmed: 10882121
Nat Cell Biol. 2017 Aug;19(8):988-995
pubmed: 28737772
Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19282-7
pubmed: 19050072
J Cell Biol. 2017 Dec 4;216(12):3971-3980
pubmed: 29066609
Eukaryot Cell. 2014 Jan;13(1):2-9
pubmed: 24243791
J Cell Sci. 2000 Feb;113 ( Pt 4):571-85
pubmed: 10652251
Nat Rev Mol Cell Biol. 2008 Nov;9(11):860-73
pubmed: 18946475
Trends Cell Biol. 2013 Feb;23(2):72-80
pubmed: 23182746
Cell. 1996 Feb 9;84(3):335-44
pubmed: 8608587
Dev Cell. 2005 Oct;9(4):565-71
pubmed: 16198298
Mol Biol Cell. 2006 Jun;17(6):2824-38
pubmed: 16571678
Nat Rev Microbiol. 2011 Jun 06;9(7):509-18
pubmed: 21643041
Cell. 2012 Jan 20;148(1-2):175-88
pubmed: 22265410
FEBS Lett. 2012 Nov 30;586(23):4208-4214
pubmed: 23108052
Mol Biol Cell. 2012 May;23(10):1998-2013
pubmed: 22438587
Trends Cell Biol. 2012 Nov;22(11):584-91
pubmed: 22980034
J Cell Sci. 1989 Oct;94 ( Pt 2):207-16
pubmed: 2695529
Trends Cell Biol. 2010 Feb;20(2):71-8
pubmed: 20061150
J Cell Biol. 2003 Jun 23;161(6):1081-92
pubmed: 12810699
Dev Cell. 2009 Dec;17(6):823-35
pubmed: 20059952
Development. 2013 Jan 1;140(1):13-21
pubmed: 23222437
Trends Cell Biol. 2013 Feb;23(2):47-53
pubmed: 23122885
J Chem Phys. 2016 Nov 14;145(18):184113
pubmed: 27846706
Curr Opin Microbiol. 2015 Dec;28:36-45
pubmed: 26291501
Science. 2012 Apr 13;336(6078):175-9
pubmed: 22499937
PLoS Comput Biol. 2013;9(7):e1003139
pubmed: 23935469
Open Biol. 2016 Sep;6(9):
pubmed: 27605377
Cell. 2019 Jun 27;178(1):12-25
pubmed: 31251912
Biophys J. 2017 Jul 11;113(1):132-137
pubmed: 28700911
SIAM J Sci Comput. 2016;38(3):C179-C202
pubmed: 28190948
PLoS Comput Biol. 2013;9(12):e1003396
pubmed: 24348237
Peptides. 2005 Feb;26(2):339-50
pubmed: 15690603
PLoS Comput Biol. 2013;9(10):e1003287
pubmed: 24146607
Development. 2017 Oct 1;144(19):3405-3416
pubmed: 28974638
J Cell Biol. 2004 Jan 19;164(2):207-18
pubmed: 14734532

Auteurs

Samhita P Banavar (SP)

Department of Physics, University of California, University of California, Santa Barbara, California, United States of America.
California NanoSystems Institute, University of California, Santa Barbara, California, United States of America.

Michael Trogdon (M)

Department of Mechanical Engineering, University of California, Santa Barbara, California, United States of America.

Brian Drawert (B)

Department of Computer Science, University of North Carolina, Asheville, North Carolina, United States of America.

Tau-Mu Yi (TM)

Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, California, United States of America.

Linda R Petzold (LR)

Department of Mechanical Engineering, University of California, Santa Barbara, California, United States of America.
Center for Bioengineering, University of California, Santa Barbara, California, United States of America.

Otger Campàs (O)

California NanoSystems Institute, University of California, Santa Barbara, California, United States of America.
Department of Mechanical Engineering, University of California, Santa Barbara, California, United States of America.
Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, California, United States of America.
Center for Bioengineering, University of California, Santa Barbara, California, United States of America.
Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.

Articles similaires

Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis.

Spencer D Shelton, Sara House, Luiza Martins Nascentes Melo et al.
1.00
DNA, Mitochondrial Humans Melanoma Mutation Neoplasm Metastasis
Humans Meta-Analysis as Topic Sample Size Models, Statistical Computer Simulation

Kupffer cell reverse migration into the liver sinusoids mitigates neonatal sepsis and meningitis.

Bruna Araujo David, Jawairia Atif, Fernanda Vargas E Silva Castanheira et al.
1.00
Animals Kupffer Cells Mice Liver Cell Movement

High-throughput Bronchus-on-a-Chip system for modeling the human bronchus.

Akina Mori, Marjolein Vermeer, Lenie J van den Broek et al.
1.00
Humans Bronchi Lab-On-A-Chip Devices Epithelial Cells Goblet Cells

Classifications MeSH