Toxin-antitoxin systems and their medical applications: current status and future perspective.
Antitoxins
Bacterial toxins
Therapeutic applications
Journal
Applied microbiology and biotechnology
ISSN: 1432-0614
Titre abrégé: Appl Microbiol Biotechnol
Pays: Germany
ID NLM: 8406612
Informations de publication
Date de publication:
Mar 2021
Mar 2021
Historique:
received:
09
08
2020
accepted:
20
01
2021
revised:
13
01
2021
pubmed:
15
2
2021
medline:
20
5
2021
entrez:
14
2
2021
Statut:
ppublish
Résumé
Almost all bacteria synthesize two types of toxins-one for its survival by regulating different cellular processes and another as a strategy to interact with host cells for pathogenesis. Usually, "bacterial toxins" are contemplated as virulence factors that harm the host organism. However, toxins produced by bacteria, as a survival strategy against the host, also hamper its cellular processes. To overcome this, the bacteria have evolved with the production of a molecule, referred to as antitoxin, to negate the deleterious effect of the toxin against itself. The toxin and antitoxins are encoded by a two-component toxin-antitoxin (TA) system. The antitoxin, a protein or RNA, sequesters the toxins of the TA system for neutralization within the bacterial cell. In this review, we have described different TA systems of bacteria and their potential medical and biotechnological applications. It is of interest to note that while bacterial toxin-antitoxin systems have been well studied, the TA system in unicellular eukaryotes, though predicted by the investigators, have never been paid the desired attention. In the present review, we have also touched upon the TA system of eukaryotes identified to date. KEY POINTS: Bacterial toxins harm the host and also affect the bacterial cellular processes. The antitoxin produced by bacteria protect it from the toxin's harmful effects. The toxin-antitoxin systems can be targeted for various medical applications.
Identifiants
pubmed: 33582835
doi: 10.1007/s00253-021-11134-z
pii: 10.1007/s00253-021-11134-z
doi:
Substances chimiques
Antitoxins
0
Bacterial Proteins
0
Bacterial Toxins
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1803-1821Références
Aakre CD, Phung TN, Huang D, Laub MT (2013) A bacterial toxin inhibits DNA replication elongation through a direct interaction with the β sliding clamp. Mol Cell 52:617–628. https://doi.org/10.1016/j.molcel.2013.10.014
doi: 10.1016/j.molcel.2013.10.014
pubmed: 24239291
pmcid: 3918436
Agarwal S, Mishra NK, Bhatnagar S, Bhatnagar R (2010) PemK toxin of Bacillus anthracis is a ribonuclease an insight into its active site, structure, and function. J Biol Chem 285:7254–7270. https://doi.org/10.1074/jbc.M109.073387
doi: 10.1074/jbc.M109.073387
pubmed: 20022964
Akarsu H, Bordes P, Mansour M, Bigot DJ, Genevaux P, Falquet L (2019) TASmania: a bacterial toxin-antitoxin systems database. PLoS Comput Biol 15:e1006946. https://doi.org/10.1371/journal.pcbi.1006946
doi: 10.1371/journal.pcbi.1006946
pubmed: 31022176
pmcid: 6504116
Andrews ES, Arcus VL (2015) Themycobacterial PhoH2 proteins are type II toxin antitoxins coupled to RNA helicase domains. Tuberculosis (Edinb) 95:385–394. https://doi.org/10.1016/j.tube.2015.03.013
doi: 10.1016/j.tube.2015.03.013
Averina OV, Alekseeva MG, Abilev SK, Ilyin VK, Danilenko VN (2013) Distribution of genes of toxin-antitoxin systems of mazEF and relBE families in bifidobacteria from human intestinal microbiota. Genetika 49:315–327. https://doi.org/10.7868/s0016675813030028
doi: 10.7868/s0016675813030028
pubmed: 23755531
Bacconi M, Haag AF, Torre A, Castagnetti A, Chiarot E, Delany I, Bensi G (2016) A stable luciferase reporter plasmid for in vivo imaging in murine models of Staphylococcus aureus infections. Appl Microbiol Biotechnol 100:3197–3206. https://doi.org/10.1007/s00253-015-7229-2
doi: 10.1007/s00253-015-7229-2
pubmed: 26685857
Bakar FA, Yeo CC, Harikrishna JA (2015) Expression of the Streptococcus pneumonia yoeBchromosomal toxin gene causes cell death in the model plant Arabidopsis thaliana. BMC Biotechnol 15:26. https://doi.org/10.1186/s12896-015-0138-8
doi: 10.1186/s12896-015-0138-8
pubmed: 25887501
pmcid: 4430920
Barbosa LCB, Cangussu ASR, Garrido SS, Marchetto R (2014) Toxin-antitoxin systems and its biotechnological applications. Afr J Biotechnol 13:11–17. https://doi.org/10.5897/AJB2013.13415
doi: 10.5897/AJB2013.13415
Barbosa LCB, Garrido SS, Marchetto R (2015) BtoxDB: a comprehensive database of protein structural data on toxin–antitoxin systems. Comput Biol Med 58:146–153. https://doi.org/10.1016/j.compbiomed.2015.01.010
doi: 10.1016/j.compbiomed.2015.01.010
pubmed: 25656309
Barbosa LCB, Garrido SS, Garcia A, Delfino DB, Santos LN, Marchetto R (2012) Design and synthesis of peptides from bacterial ParE toxin as inhibitors of topoisomerases. Eur J Med Chem 54:591–596. https://doi.org/10.1016/j.ejmech.2012.06.008
doi: 10.1016/j.ejmech.2012.06.008
pubmed: 22749642
Barrios AF, Zuo R, Hashimoto Y, Yang L, Bentley WE, Wood TK (2006) Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J Bacteriol 188:305–316. https://doi.org/10.1128/JB.188.1.305-316.2006
doi: 10.1128/JB.188.1.305-316.2006
Bélanger M, Moineau S (2015) Mutational analysis of the antitoxin in the Lactococcal type III toxin-antitoxin system AbiQ. Appl Environ Microbiol 81:3848–3855. https://doi.org/10.1128/AEM.00572-15
doi: 10.1128/AEM.00572-15
pubmed: 25819963
pmcid: 4421047
Bernard P, Couturier M (1992) Cell killing by the F plasmid CcdB protein involves poisoning of DNA-topoisomerase II complexes. J Mol Biol 226:735–745. https://doi.org/10.1016/0022-2836(92)90629-x
doi: 10.1016/0022-2836(92)90629-x
Bernard P, Kézdy KE, Van Melderen L, Steyaert J, Wyns L, Pato ML, Higgins PN, Couturier M (1993) The F plasmid CcdB protein induces efficient ATP-dependent DNA cleavage by gyrase. J Mol Biol 234:534–541. https://doi.org/10.1006/jmbi.1993.1609
doi: 10.1006/jmbi.1993.1609
pubmed: 8254658
Blower TR, Pei XY, Short FL, Fineran PC, Humphreys DP, Luisi BF, Salmond GP (2011) A processed noncoding RNA regulates an altruistic bacterial antiviral system. Nat Struct Mol Biol 18:185–190. https://doi.org/10.1038/nsmb.1981
doi: 10.1038/nsmb.1981
pubmed: 21240270
pmcid: 4612426
Blower TR, Short FL, Rao F, Mizuguchi K, Pei XY, Fineran PC, Salmond GP (2012) Identification and classification of bacterial type III toxin–antitoxin systems encoded in chromosomal and plasmid genomes. Nucleic Acids Res 40:6158–6173. https://doi.org/10.1093/nar/gks231
doi: 10.1093/nar/gks231
pubmed: 22434880
pmcid: 3401426
Brantl S, Jahn N (2015) sRNAs in bacterial type I and type III toxin-antitoxin systems. FEMS Microbiol Rev 39:413–427. https://doi.org/10.1093/femsre/fuv003
doi: 10.1093/femsre/fuv003
pubmed: 25808661
Brielle R, Pinel-Marie ML, Felden B (2016) Linking bacterial type I toxins with their actions. Curr Issues Mol Biol 30:114–121. https://doi.org/10.1016/j.mib.2016.01.009
doi: 10.1016/j.mib.2016.01.009
Brötz-Oesterhelt H, Beyer D, Kroll HP, Endermann R, Ladel C, Schroeder W, Bandow JE (2005) Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nat Med 11:1082–1087. https://doi.org/10.1038/nm1306
doi: 10.1038/nm1306
pubmed: 16200071
Brown BL, Lord DM, Grigoriu S, Peti W, Page R (2013) The Escherichia coli toxin MqsR destabilizes the transcriptional repression complex formed between the antitoxin MqsA and the mqsRA operon promoter. J Biol Chem 288:1286–1294. https://doi.org/10.1074/jbc.M112.421008
doi: 10.1074/jbc.M112.421008
pubmed: 23172222
Budde PP, Davis BM, Yuan J, Waldor MK (2007) Characterization of a higBA toxin-antitoxin locus in Vibrio cholerae. J Bacteriol 189:491–500. https://doi.org/10.1128/JB.00909-06
doi: 10.1128/JB.00909-06
pubmed: 17085558
Bukowski M, Lyzen R, Helbin WM, Bonar E, Szalewska-Palasz A, Wegrzyn G, Dubin G, Dubin A, Wladyka B (2013) A regulatory role for Staphylococcus aureus toxin-antitoxin system PemIKSa. Nat Commun 4:2012. https://doi.org/10.1038/ncomms3012
doi: 10.1038/ncomms3012
pubmed: 23774061
Cai Y, Usher B, Gutierrez C, Tolcan A, Mansour M, Fineran PC, Condon C, Neyrolles O, Genevaux P, Blower TR (2020) A nucleotidyltransferase toxin inhibits growth of Mycobacterium tuberculosis through inactivation of tRNA acceptor stems. Sci Adv 6:eabb6651. https://doi.org/10.1126/sciadv.abb6651
doi: 10.1126/sciadv.abb6651
pubmed: 32923609
pmcid: 7450476
Chan WT, Moreno-Córdoba I, Yeo CC, Espinosa M (2012) Toxin-antitoxin genes of the Gram- positive pathogen Streptococcus pneumoniae: so few and yet so many. Microbiol Mol Biol Rev 76:773–791. https://doi.org/10.1128/MMBR.00030-12
doi: 10.1128/MMBR.00030-12
pubmed: 23204366
pmcid: 3510519
Chan WT, Yeo CC, Sadowy E, Espinosa M (2014) Functional validation of putative toxin-antitoxin genes from the Gram-positive pathogen Streptococcus pneumoniae: phd-doc is the fourth bona-fide operon. Front Microbiol 5:677. https://doi.org/10.3389/fmicb.2014.00677
doi: 10.3389/fmicb.2014.00677
pubmed: 25538695
pmcid: 4257102
Chan WT, Balsa D, Espinosa M (2015) One cannot rule them all: are bacterial toxins-antitoxins druggable? FEMS Microbiol Rev 39:522–540. https://doi.org/10.1093/femsre/fuv002
doi: 10.1093/femsre/fuv002
pubmed: 25796610
pmcid: 4487406
Chan WT, Espinosa M, Yeo CC (2016) Keeping the wolves at bay: antitoxins of prokaryotic type II toxin-antitoxin systems. Front Mol Biosci 3:9. https://doi.org/10.3389/fmolb.2016.00009
doi: 10.3389/fmolb.2016.00009
pubmed: 27047942
pmcid: 4803016
Chan WT, Domenech M, Moreno-Córdoba I, Navarro-Martínez V, Nieto C, Moscoso M, García E, Espinosa M (2018) The Streptococcus pneumoniae yefM-yoeB and relBE toxin-antitoxin operons participate in oxidative stress and biofilm formation. Toxins 10:378. https://doi.org/10.3390/toxins10090378
doi: 10.3390/toxins10090378
pmcid: 6162744
Cheverton AM, Gollan B, Przydacz M, Wong CT, Mylona A, Hare SA, Helaine S (2016) A Salmonella toxin promotes persister formation through acetylation of tRNA. Mol Cell 63:86–96. https://doi.org/10.1016/j.molcel.2016.05.002
doi: 10.1016/j.molcel.2016.05.002
pubmed: 27264868
pmcid: 4942678
Choi JS, Kim W, Suk S, Park H, Bak G, Yoon J, Lee Y (2018) The small RNA, SdsR, acts as a novel type of toxin in Escherichia coli. RNA Biol 15:1319–1335. https://doi.org/10.1080/15476286.2018.1532252
doi: 10.1080/15476286.2018.1532252
pubmed: 30293519
pmcid: 6284582
Chono H, Matsumoto K, Tsuda H, Saito N, Lee K, Kim S, Mineno J (2011a) Acquisition of HIV-1 resistance in T lymphocytes using an ACA-specific E. coli mRNA interferase. Hum Gene Ther 22:35–43. https://doi.org/10.1089/hum.2010.001
doi: 10.1089/hum.2010.001
pubmed: 20649483
Chono H, Saito N, Tsuda H, Shibata H, Ageyama N, Terao K, Kato I (2011b) In vivo safety and persistence of endoribonuclease gene-transduced CD4+ T cells in Cynomolgus macaques for HIV-1 gene therapy model. PLoS One 6:e23585. https://doi.org/10.1371/journal.pone.0023585
doi: 10.1371/journal.pone.0023585
pubmed: 21858176
pmcid: 3157387
Christensen SK, Maenhaut-Michel G, Mine N, Gottesman S, Gerdes K, Van Melderen L (2004) Overproduction of the Lon protease triggers inhibition of translation in Escherichia coli: involvement of the yefM-yoeB toxin-antitoxin system. Mol Microbiol 51:1705–1717. https://doi.org/10.1046/j.1365-2958.2003.03941.x
doi: 10.1046/j.1365-2958.2003.03941.x
pubmed: 15009896
Conlon BP, Nakayasu ES, Fleck LE, LaFleur MD, Isabella VM, Coleman K, Lewis K (2013) Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature 503:365–370. https://doi.org/10.1038/nature12790
doi: 10.1038/nature12790
pubmed: 24226776
pmcid: 4031760
de la Cueva-Méndez G, Pimentel B (2013) Biotechnological and medical exploitations of toxin-antitoxin genes and their components. In: Prokaryotic Toxin-Antitoxins. Springer, Berlin, pp 341–360
doi: 10.1007/978-3-642-33253-1_19
de la Cueva-Méndez G, Mills AD, Clay-Farrace L, Díaz-Orejas R, Laskey RA (2003) Regulatable killing of eukaryotic cells by the prokaryotic proteins Kid and Kis. EMBO J 22:246–251. https://doi.org/10.1093/emboj/cdg026
doi: 10.1093/emboj/cdg026
pubmed: 12514130
pmcid: 140101
Demidenok OI, Goncharenko AV (2013) Bacterial toxin-antitoxin systems and perspectives for their application in medicine: a review. Prikl Biokhim Mikrobiol 49:539–546
pubmed: 25434177
do Vale A, Cabanes D, Sousa S (2016) Bacterial toxins as pathogen weapons against phagocytes. Front Microbiol 7:42. https://doi.org/10.3389/fmicb.2016.00042
doi: 10.3389/fmicb.2016.00042
pubmed: 26870008
pmcid: 4734073
Donegan NP, Thompson ET, Fu Z, Cheung AL (2010) Proteolytic regulation of toxin-antitoxin systems by ClpPC in Staphylococcus aureus. J Bacteriol 192:1416–1422. https://doi.org/10.1128/JB.00233-09
doi: 10.1128/JB.00233-09
pubmed: 20038589
Dörr T, Vulić M, Lewis K (2010) Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol 8:e1000317. https://doi.org/10.1371/journal.pbio.1000317
doi: 10.1371/journal.pbio.1000317
pubmed: 20186264
pmcid: 2826370
Edae C, Wabalo EK (2019) Bacterial toxins and their modes of action: a review article. 55:11–16. https://doi.org/10.7176/JMPB/55-03
Feng J, Auwaerter PG, Zhang Y (2015) Drug combinations against Borrelia burgdorferi persisters in vitro: eradication achieved by using daptomycin, cefoperazone and doxycycline. PLoS ONE 10:e0117207. https://doi.org/10.1371/journal.pone.0117207
doi: 10.1371/journal.pone.0117207
pubmed: 25806811
pmcid: 4373819
Fiebig A, Castro Rojas CM, Siegal-Gaskins D, Crosson S (2010) Interaction specificity, toxicity and regulation of a paralogous set of ParE/RelE-family toxin-antitoxin systems. Mol Microbiol 77:236–251. https://doi.org/10.1111/j.1365-2958.2010.07207.x
doi: 10.1111/j.1365-2958.2010.07207.x
pubmed: 20487277
pmcid: 2907451
Fiedoruk K, Daniluk T, Swiecicka I, Sciepuk M, Leszczynska K (2015) Type II toxin–antitoxin systems are unevenly distributed among Escherichia coli phylogroups. Microbiology 161:158–167. https://doi.org/10.1099/mic.0.082883-0
doi: 10.1099/mic.0.082883-0
pubmed: 25378561
Fineran PC, Blower TR, Foulds IJ, Humphreys DP, Lilley KS, Salmond GP (2009) The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. Proc Natl Acad Sci U S A 106:894–899. https://doi.org/10.1073/pnas.0808832106
doi: 10.1073/pnas.0808832106
pubmed: 19124776
pmcid: 2630095
Fozo EM, Hemm MR, Storz G (2008a) Small toxic proteins and the antisense RNAs that repress them. Microbiol Mol Biol Rev 72:579–589. https://doi.org/10.1128/MMBR.00025-08
doi: 10.1128/MMBR.00025-08
pubmed: 19052321
pmcid: 2593563
Fozo EM, Kawano M, Fontaine F, Kaya Y, Mendieta KS, Jones KL, Ocampo A, Rudd KE, Storz G (2008b) Repression of small toxic protein synthesis by the Sib and OhsC small RNAs. Mol Microbiol 70:1076–1093. https://doi.org/10.1111/j.1365-2958.2008.06394.x
doi: 10.1111/j.1365-2958.2008.06394.x
pubmed: 18710431
pmcid: 2597788
Fozo EM, Makarova KS, Shabalina SA, Yutin N, Koonin EV, Storz G (2010) Abundance of type I toxin–antitoxin systems in bacteria: searches for new candidates and discovery of novel families. Nucleic Acids Res 38:3743–3759. https://doi.org/10.1093/nar/gkq054
doi: 10.1093/nar/gkq054
pubmed: 20156992
pmcid: 2887945
Fröhlich KS, Haneke K, Papenfort K, Vogel J (2016) The target spectrum of SdsR small RNA in Salmonella. Nucleic Acids Res 44:10406–10422. https://doi.org/10.1093/nar/gkw632
doi: 10.1093/nar/gkw632
pubmed: 27407104
pmcid: 5137417
García-Contreras R, Zhang XS, Kim Y, Wood TK (2008) Protein translation and cell death: the role of rare tRNAs in biofilm formation and in activating dormant phage killer genes. PLoS One 3:e2394. https://doi.org/10.1371/journal.pone.0002394
doi: 10.1371/journal.pone.0002394
pubmed: 18545668
pmcid: 2408971
Garcia-Pino A, Balasubramanian S, Wyns L, Gazit E, De Greve H, Magnuson RD, Charlier D, van Nuland NA, Loris R (2010) Allostery and intrinsic disorder mediate transcription regulation by conditional cooperativity. Cell 142:101–111. https://doi.org/10.1016/j.cell.2010.05.039
doi: 10.1016/j.cell.2010.05.039
pubmed: 20603017
Gerdes K, Bech FW, Jørgensen ST, Løbner-Olesen A, Rasmussen PB, Atlung T, Boe L, Karlstrom O, Molin S, von Meyenburg K (1986) Mechanism of postsegregational killing by the hok gene product of the parB system of plasmid R1 and its homology with the relF gene product of the E. coli relB operon. EMBO J 5:2023–2029
doi: 10.1002/j.1460-2075.1986.tb04459.x
Germain E, Castro-Roa D, Zenkin N, Gerdes K (2013) Molecular mechanism of bacterial persistence by HipA. Mol Cell 52:248–254. https://doi.org/10.1016/j.molcel.2013.08.045
doi: 10.1016/j.molcel.2013.08.045
pubmed: 24095282
Ghafourian S, Raftari M, Sadeghifard N, Sekawi Z (2014) Toxin-antitoxin systems: classification, biological function and application in biotechnology. Curr Issues Mol Biol 16:9–14
pubmed: 23652423
Goeders N, Chai R, Chen B, Day A, Salmond GP (2016) Structure, evolution, and functions of bacterial type III toxin-antitoxin systems. Toxins 8:282. https://doi.org/10.3390/toxins8100282
doi: 10.3390/toxins8100282
pmcid: 5086642
Goeders N, Van Melderen L (2014) Toxin-antitoxin systems as multilevel interaction systems. Toxins 6:304–324. https://doi.org/10.3390/toxins6010304
doi: 10.3390/toxins6010304
pubmed: 24434905
pmcid: 3920263
Gotfredsen M, Gerdes K (1998) The Escherichia coli relBE genes belong to a new toxin-antitoxin gene family. Mol Microbiol 29:1065–1076. https://doi.org/10.1046/j.1365-2958.1998.00993.x
doi: 10.1046/j.1365-2958.1998.00993.x
pubmed: 9767574
Grady R, Hayes F (2003) Axe-Txe, a broad-spectrum proteic toxin-antitoxin system specified by a multidrug-resistant, clinical isolate of Enterococcus faecium. Mol Microbiol 47:1419–1432. https://doi.org/10.1046/j.1365-2958.2003.03387.x
doi: 10.1046/j.1365-2958.2003.03387.x
pubmed: 12603745
Gross M, Marianovsky I, Glaser G (2006) MazG–a regulator of programmed cell death in Escherichia coli. Mol Microbiol 59:590–601. https://doi.org/10.1111/j.1365-2958.2005.04956.x
doi: 10.1111/j.1365-2958.2005.04956.x
pubmed: 16390452
Guo Y, Quiroga C, Chen Q, McAnulty MJ, Benedik MJ, Wood TK, Wang X (2014) RalR (a DNase) and RalA (a small RNA) form a type I toxin-antitoxin system in Escherichia coli. Nucleic Acids Res 42:6448–6462. https://doi.org/10.1093/nar/gku279
doi: 10.1093/nar/gku279
pubmed: 24748661
pmcid: 4041452
Hansen S, Vulić M, Min J, Yen TJ, Schumacher MA, Brennan RG, Lewis K (2012) Regulation of the Escherichia coli HipBA toxin-antitoxin system by proteolysis. PLoS One 7:e39185. https://doi.org/10.1371/journal.pone.0039185
doi: 10.1371/journal.pone.0039185
pubmed: 22720069
pmcid: 3376134
Harms A, Brodersen DE, Mitarai N, Gerdes K (2018) Toxins, targets, and triggers: an overview of toxin-antitoxin biology. Mol Cell 70:768–784. https://doi.org/10.1016/j.molcel.2018.01.003
doi: 10.1016/j.molcel.2018.01.003
pubmed: 29398446
Hosseini N, Pourhajibagher M, Chiniforush N, Hosseinkhan N, Rezaie P, Bahador A (2019) Modulation of toxin-antitoxin system Rnl AB type II in phage-resistant gamma proteobacteria surviving photodynamic treatment. J Lasers Med Sci 10:21–28. https://doi.org/10.15171/jlms.2019.03
doi: 10.15171/jlms.2019.03
pubmed: 31360364
Houri H, Ghalavand Z, Faghihloo E, Fallah F, Mohammadi-Yeganeh S (2020) Exploiting yoeB-yefM toxin-antitoxin system of Streptococcus pneumoniae on the selective killing of miR-21 overexpressing breast cancer cell line (MCF-7). J Cell Physiol 235:2925–2936. https://doi.org/10.1002/jcp.29198
doi: 10.1002/jcp.29198
pubmed: 31541457
Inouye M, Zhang J, Suzuki M (2011) U.S. Patent No. 7,985,575. Washington, DC: U.S. Patent and Trademark Office.
Jahn N, Preis H, Wiedemann C, Brantl S (2012) BsrG/SR4 from Bacillus subtilis-the first temperature-dependent type I toxin-antitoxin system. Mol Microbiol 83:579–598. https://doi.org/10.1111/j.1365-2958.2011.07952.x
doi: 10.1111/j.1365-2958.2011.07952.x
pubmed: 22229825
Jiang Y, Pogliano J, Helinski DR, Konieczny I (2002) ParE toxin encoded by the broad-host-range plasmid RK2 is an inhibitor of Escherichia coli gyrase. Mol Microbiol 44:971–979. https://doi.org/10.1046/j.1365-2958.2002.02921.x
doi: 10.1046/j.1365-2958.2002.02921.x
pubmed: 12010492
Jørgensen MG, Pandey DP, Jaskolska M, Gerdes K (2009) HicA of Escherichia coli defines a novel family of translation-independent mRNA interferases in bacteria and archaea. J Bacteriol 191:1191–1199. https://doi.org/10.1128/JB.01013-08
doi: 10.1128/JB.01013-08
pubmed: 19060138
Kamphuis MB, Monti MC, van den Heuvel RH, López-Villarejo J, Díaz-Orejas R, Boelens R (2007) Structure and function of bacterial kid-kis and related toxin-antitoxin systems. Protein Pept Lett 14:113–124. https://doi.org/10.2174/092986607779816096
doi: 10.2174/092986607779816096
pubmed: 17305597
Kang SM, Kim DH, Jin C, Lee BJ (2018) A systematic overview of type II and III toxin-antitoxin systems with a focus on drugability. Toxins 10:515. https://doi.org/10.3390/toxins10120515
doi: 10.3390/toxins10120515
pmcid: 6315513
Kaspy I, Rotem E, Weiss N, Ronin I, Balaban NQ, Glaser G (2013) HipA-mediated antibiotic persistence via phosphorylation of the glutamyl-tRNA-synthetase. Nat Commun 4:3001. https://doi.org/10.1038/ncomms4001
doi: 10.1038/ncomms4001
pubmed: 24343429
Kawano M, Aravind L, Storz G (2007) An antisense RNA controls synthesis of an SOS-induced toxin evolved from an antitoxin. Mol Microbiol 64:738–754. https://doi.org/10.1111/j.1365-2958.2007.05688.x
doi: 10.1111/j.1365-2958.2007.05688.x
pubmed: 17462020
pmcid: 1891008
Kim Y, Wood TK (2010) Toxins Hha and CspD and small RNA regulator Hfq are involved in persister cell formation through MqsR in Escherichia coli. Biochem Biophys Res Commun 391:209–213. https://doi.org/10.1016/j.bbrc.2009.11.033
doi: 10.1016/j.bbrc.2009.11.033
pubmed: 19909729
Kim DH, Kang SM, Park SJ, Jin C, Yoon HJ, Lee BJ (2018) Functional insights into the Streptococcus pneumoniae HicBA toxin-antitoxin system based on a structural study. Nucleic Acids Res 46:6371–6386. https://doi.org/10.1093/nar/gky469
doi: 10.1093/nar/gky469
pubmed: 29878152
pmcid: 6159526
Klimina KM, Kjasova DK, Poluektova EU, Krügel H, Leuschner Y, Saluz HP, Danilenko VN (2013) Identification and characterization of toxin–antitoxin systems in strains of Lactobacillus rhamnosus isolated from humans. Anaerobe 22:82–89. https://doi.org/10.1016/j.anaerobe.2013.05.007
doi: 10.1016/j.anaerobe.2013.05.007
pubmed: 23727113
Klimina KM, Poluektova EU, Danilenko VN (2017) Bacterial toxin–antitoxin systems: properties, functional significance, and possibility of use. Appl Biochem Microbiol 53:494–505. https://doi.org/10.1134/S0003683817050076
doi: 10.1134/S0003683817050076
Klimina KM, Voroshilova VN, Poluektova EU, Veselovsky VA, Yunes RA, Kovtun AS, Kudryavtseva AV, Kasianov AS, Danilenko VN (2020) Toxin-antitoxin systems: a tool for taxonomic analysis of human intestinal microbiota. Toxins 12:388. https://doi.org/10.3390/toxins12060388
doi: 10.3390/toxins12060388
pmcid: 7354421
Kolodkin-Gal I, Verdiger R, Shlosberg-Fedida A, Engelberg-Kulka H (2009) A differential effect of E. coli toxin-antitoxin systems on cell death in liquid media and biofilm formation. PLoS One 4:e6785. https://doi.org/10.1371/journal.pone.0006785
doi: 10.1371/journal.pone.0006785
pubmed: 19707553
pmcid: 2727947
Kristoffersen P, Jensen GB, Gerdes K, Piškur J (2000) Bacterial toxin-antitoxin gene system as containment control in yeast cells. Appl Environ Microbiol 66:5524–5526. https://doi.org/10.1128/aem.66.12.5524-5526.2000
doi: 10.1128/aem.66.12.5524-5526.2000
pubmed: 11097943
pmcid: 92497
Kroll J, Klinter S, Schneider C, Voß I, Steinbüchel A (2010) Plasmid addiction systems: perspectives and applications in biotechnology. Microb Biotechnol 3:634–657. https://doi.org/10.1111/j.1751-7915.2010.00170.x
doi: 10.1111/j.1751-7915.2010.00170.x
pubmed: 21255361
pmcid: 3815339
Kumar A, Alam A, Bharadwaj P, Tapadar S, Rani M, Hasnain SE (2019) Toxin-antitoxin (TA) systems in stress survival and pathogenesis. In: Hasnain S, Ehtesham N, Grover S (eds) Mycobacterium tuberculosis: molecular infection biology, pathogenesis, diagnostics and new interventions. Springer, Singapore. https://doi.org/10.1007/978-981-32-9413-415
doi: 10.1007/978-981-32-9413-415
Kwan BW, Lord DM, Peti W, Page R, Benedik MJ, Wood TK (2015) The MqsR/MqsA toxin/antitoxin system protects Escherichia coli during bile acid stress. Environ Microbiol 17:3168–3181. https://doi.org/10.1111/1462-2920.12749
doi: 10.1111/1462-2920.12749
pubmed: 25534751
Lee IG, Lee SJ, Chae S, Lee KY, Kim JH, Lee BJ (2015) Structural and functional studies of the Mycobacterium tuberculosis VapBC30 toxin-antitoxin system: implications for the design of novel antimicrobial peptides. Nucleic Acids Res 43:7624–7637. https://doi.org/10.1093/nar/gkv689
doi: 10.1093/nar/gkv689
pubmed: 26150422
pmcid: 4551927
Lee KY, Lee BJ (2016) Structure, biology, and therapeutic application of toxin–antitoxin systems in pathogenic bacteria. Toxins 8:305. https://doi.org/10.3390/toxins8100305
doi: 10.3390/toxins8100305
pmcid: 5086665
Leplae R, Geeraerts D, Hallez R, Guglielmini J, Dreze P, Van Melderen L (2011) Diversity of bacterial type II toxin–antitoxin systems: a comprehensive search and functional analysis of novel families. Nucleic Acids Res 39:5513–5525. https://doi.org/10.1093/nar/gkr131
doi: 10.1093/nar/gkr131
pubmed: 21422074
pmcid: 3141249
Lioy VS, Rey O, Balsa D, Pellicer T, Alonso JC (2010) A toxin–antitoxin module as a target for antimicrobial development. Plasmid 63:31–39. https://doi.org/10.1016/j.plasmid.2009.09.005
doi: 10.1016/j.plasmid.2009.09.005
pubmed: 19800365
Liu M, Zhang Y, Inouye M, Woychik NA (2008) Bacterial addiction module toxin Doc inhibits translation elongation through its association with the 30S ribosomal subunit. Proc Natl Acad Sci U S A 105:5885–5890. https://doi.org/10.1073/pnas.0711949105
doi: 10.1073/pnas.0711949105
pubmed: 18398006
pmcid: 2311363
López-Igual R, Bernal-Bayard J, Rodríguez-Patón A, Ghigo JM, Mazel D (2019) Engineered toxin-intein antimicrobials can selectively target and kill antibiotic-resistant bacteria in mixed populations. Nat Biotechnol 37:755–760. https://doi.org/10.1038/s41587-019-0105-3
doi: 10.1038/s41587-019-0105-3
pubmed: 30988505
Marimon O, Teixeira JM, Cordeiro TN, Soo VW, Wood TL, Mayzel M, Amata I, Garcia J, Morera A, Gay M, Vilaseca M, Orekhov VY, Wood TK, Pons M (2016) An oxygen-sensitive toxin–antitoxin system. Nat Commun 7:13634. https://doi.org/10.1038/ncomms13634
doi: 10.1038/ncomms13634
pubmed: 27929062
pmcid: 5155140
Marques CNH, Morozov A, Planzos P, Zelaya HM (2014) The fatty acid signaling molecule cis-2-Decenoic Acid increases metabolic activity and reverts persister cells to an antimicrobial-susceptible state. Appl Environ Microbiol 80:6976–6991. https://doi.org/10.1128/AEM.01576-14
doi: 10.1128/AEM.01576-14
pubmed: 25192989
pmcid: 4249009
Masuda H, Inouye M (2017) Toxins of prokaryotic toxin-antitoxin systems with sequence-specific endoribonuclease activity. Toxins 9:140. https://doi.org/10.3390/toxins9040140
doi: 10.3390/toxins9040140
pmcid: 5408214
Masuda H, Tan Q, Awano N, Yamaguchi Y, Inouye M (2012a) A novel membrane-bound toxin for cell division, CptA (YgfX), inhibits polymerization of cytoskeleton proteins, FtsZ and MreB, in Escherichia coli. FEMS Microbiol Lett 328:174–181. https://doi.org/10.1111/j.1574-6968.2012.02496.x
doi: 10.1111/j.1574-6968.2012.02496.x
pubmed: 22239607
pmcid: 3334289
Masuda H, Tan Q, Awano N, Wu KP, Inouye M (2012b) YeeU enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CptA (YeeV) toxicity in Escherichia coli. Mol Microbiol 84:979–989. https://doi.org/10.1111/j.1365-2958.2012.08068.x
doi: 10.1111/j.1365-2958.2012.08068.x
pubmed: 22515815
Miki T, Park JA, Nagao K, Murayama N, Horiuchi T (1992) Control of segregation of chromosomal DNA by sex factor F in Escherichia coli. Mutants of DNA gyrase subunit A suppress letD (ccdB) product growth inhibition. J Mol Biol 225:39–52. https://doi.org/10.1016/0022-2836(92)91024-j
doi: 10.1016/0022-2836(92)91024-j
pubmed: 1316444
Mohammadzadeh R, Shivaee A, Ohadi E, Kalani BS (2020) In silico insight into the dominant type II toxin–antitoxin systems and Clp proteases in Listeria monocytogenes and designation of derived peptides as a novel approach to interfere with this system. Int J Peptide Res Therap 26:613–623. https://doi.org/10.1007/s10989-019-09868-6
doi: 10.1007/s10989-019-09868-6
Mruk I, Kobayashi I (2014) To be or not to be: regulation of restriction–modification systems and other toxin–antitoxin systems. Nucleic Acids Res 42:70–86. https://doi.org/10.1093/nar/gkt711
doi: 10.1093/nar/gkt711
pubmed: 23945938
Muñoz-Gómez AJ, Lemonnier M, Santos-Sierra S, Berzal-Herranz A, Díaz-Orejas R (2005) RNase/anti-RNase activities of the bacterial parD toxin-antitoxin system. J Bacteriol 187:3151–3157. https://doi.org/10.1128/JB.187.9.3151-3157.2005
doi: 10.1128/JB.187.9.3151-3157.2005
pubmed: 15838042
pmcid: 1082843
Mutschler H, Gebhardt M, Shoeman RL, Meinhart A (2011) A novel mechanism of programmed cell death in bacteria by toxin-antitoxin systems corrupts peptidoglycan synthesis. PLoS Biol 9:e1001033. https://doi.org/10.1371/journal.pbio.1001033
doi: 10.1371/journal.pbio.1001033
pubmed: 21445328
pmcid: 3062530
Nehlsen K, Herrmann S, Zauers J, Hauser H, Wirth D (2010) Toxin–antitoxin based transgene expression in mammalian cells. Nucleic Acids Res 38:e32–e32. https://doi.org/10.1093/nar/gkp1140
doi: 10.1093/nar/gkp1140
pubmed: 20007149
Ogura T, Hiraga S (1983) Mini-F plasmid genes that couple host cell division to plasmid proliferation. Proc Natl Acad Sci U S A 80:4784–4788. https://doi.org/10.1073/pnas.80.15.4784
doi: 10.1073/pnas.80.15.4784
pubmed: 6308648
pmcid: 384129
Overgaard M, Borch J, Jørgensen MG, Gerdes K (2008) Messenger RNA interferase RelE controls relBE transcription by conditional cooperativity. Mol Microbiol 69:841–857. https://doi.org/10.1111/j.1365-2958.2008.06313
doi: 10.1111/j.1365-2958.2008.06313
pubmed: 18532983
Pandey DP, Gerdes K (2005) Toxin–antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res 33:966–976. https://doi.org/10.1093/nar/gki201
doi: 10.1093/nar/gki201
pubmed: 15718296
pmcid: 549392
Park JH, Yamaguchi Y, Inouye M (2012) Intramolecular regulation of the sequence-specific mRNA interferase activity of MazF fused to a MazE fragment with a linker cleavable by specific proteases. Appl Environ Microbiol 78:3794–3799. https://doi.org/10.1128/AEM.00364-12
doi: 10.1128/AEM.00364-12
pubmed: 22447587
pmcid: 3346410
Pedersen K, Gerdes K (1999) Multiple hok genes on the chromosome of Escherichia coli. Mol Microbiol 32:1090–1102. https://doi.org/10.1046/j.1365-2958.1999.01431.x
doi: 10.1046/j.1365-2958.1999.01431.x
pubmed: 10361310
Pedersen K, Zavialov AV, Pavlov MY, Elf J, Gerdes K, Ehrenberg M (2003) The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal A site. Cell 112:131–140. https://doi.org/10.1016/s0092-8674(02)01248-5
doi: 10.1016/s0092-8674(02)01248-5
pubmed: 12526800
Pinel-Marie ML, Brielle R, Felden B (2014) Dual toxic-peptide-coding Staphylococcus aureus RNA under antisense regulation targets host cells and bacterial rivals unequally. Cell Rep 7:424–435. https://doi.org/10.1016/j.celrep.2014.03.012
doi: 10.1016/j.celrep.2014.03.012
pubmed: 24703849
Poluektova EU, Yunes RA, Epiphanova MV, Orlova VS, Danilenko VN (2017) The Lactobacillus rhamnosus and Lactobacillus fermentum strains from human biotopes characterized with MLST and toxin-antitoxin gene polymorphism. Arch Microbiol 199:683–690. https://doi.org/10.1007/s00203-017-1346-5
doi: 10.1007/s00203-017-1346-5
pubmed: 28213763
Preston MA, Pimentel B, Bermejo-Rodríguez C, Dionne I, Turnbull A, de la Cueva-Méndez G (2016) Repurposing a prokaryotic toxin-antitoxin system for the selective killing of oncogenically stressed human cells. ACS Synth Biol 5:540–546. https://doi.org/10.1021/acssynbio.5b00096
doi: 10.1021/acssynbio.5b00096
pubmed: 26230535
Ramage HR, Connolly LE, Cox JS (2009) Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS Genet 5:e1000767. https://doi.org/10.1371/journal.pgen.1000767
doi: 10.1371/journal.pgen.1000767
pubmed: 20011113
pmcid: 2781298
Ren D, Bedzyk LA, Thomas SM, Ye RW, Wood TK (2004) Gene expression in Escherichia coli biofilms. Appl Microbiol Biotechnol 64:515–524. https://doi.org/10.1007/s00253-003-1517-y
doi: 10.1007/s00253-003-1517-y
pubmed: 14727089
Rocker A, Meinhart A (2015) A cis-acting antitoxin domain within the chromosomal toxin-antitoxin module EzeT of Escherichia coli quenches toxin activity. Mol Microbiol 97:589–604. https://doi.org/10.1111/mmi.13051
doi: 10.1111/mmi.13051
pubmed: 25943309
Równicki M, Pieńko T, Czarnecki J, Kolanowska M, Bartosik D, Trylska J (2018) Artificial activation of Escherichia coli mazEF and hipBA toxin-antitoxin systems by antisense peptide nucleic acids as an antibacterial strategy. Front Microbiol 9:2870. https://doi.org/10.3389/fmicb.2018.02870
doi: 10.3389/fmicb.2018.02870
pubmed: 30534121
pmcid: 6275173
Rudkin JK, McLoughlin RM, Preston A, Massey RC (2017) Bacterial toxins: offensive, defensive, or something else altogether? PLoS Pathog 13:e1006452. https://doi.org/10.1371/journal.ppat.1006452
doi: 10.1371/journal.ppat.1006452
pubmed: 28934339
pmcid: 5608399
Saffarian Abbas Zadeh M (2018) Bacteria-mediated delivery of mazF mRNA into cancer cells for induction of apoptosis. Dissertation, Clemson University
Samson JE, Magadán AH, Sabri M, Moineau S (2013) Revenge of the phages: defeating bacterial defences. Nat Rev Microbiol 11:675–687. https://doi.org/10.1038/nrmicro3096
doi: 10.1038/nrmicro3096
pubmed: 23979432
Satwika D, Klassen R, Meinhardt F (2012) Anticodon nuclease encoding virus-like elements in yeast. Appl Microbiol Biotechnol 96:345–356. https://doi.org/10.1007/s00253-012-4349-9
doi: 10.1007/s00253-012-4349-9
pubmed: 22899498
Sayed N, Nonin-Lecomte S, Réty S, Felden B (2012) Functional and structural insights of a Staphylococcus aureus apoptotic-like membrane peptide from a toxin-antitoxin module. J Biol Chem 287:43454–43463. https://doi.org/10.1074/jbc.M112.402693
doi: 10.1074/jbc.M112.402693
pubmed: 23129767
pmcid: 3527932
Sberro H, Leavitt A, Kiro R, Koh E, Peleg Y, Qimron U, Sorek R (2013) Discovery of functional toxin/antitoxin systems in bacteria by shotgun cloning. Mol Cell 50:136–148. https://doi.org/10.1016/j.molcel.2013.02.002
doi: 10.1016/j.molcel.2013.02.002
pubmed: 23478446
pmcid: 3644417
Schureck MA, Maehigashi T, Miles SJ, Marquez J, Cho SE, Erdman R, Dunham CM (2014) Structure of the Proteus vulgaris HigB-(HigA) 2-HigB toxin-antitoxin complex. J Biol Chem 289:1060–1070. https://doi.org/10.1074/jbc.M113.512095
doi: 10.1074/jbc.M113.512095
pubmed: 24257752
Schuster CF, Bertram R (2013) Toxin–antitoxin systems are ubiquitous and versatile modulators of prokaryotic cell fate. FEMS Microbiol Lett 340:73–85. https://doi.org/10.1111/1574-6968.12074
doi: 10.1111/1574-6968.12074
pubmed: 23289536
Schuster CF, Bertram R (2016) Toxin-antitoxin systems of Staphylococcus aureus. Toxins 8:140. https://doi.org/10.3390/toxins8050140
doi: 10.3390/toxins8050140
pmcid: 4885055
Sevin EW, Barloy-Hubler F (2007) RASTA-Bacteria: a web-based tool for identifying toxin-antitoxin loci in prokaryotes. Genome Biol 8:R155. https://doi.org/10.1186/gb-2007-8-8-r155
doi: 10.1186/gb-2007-8-8-r155
pubmed: 17678530
pmcid: 2374986
Shah D, Zhang Z, Khodursky A, Kaldalu N, Kurg K, Lewis K (2006) Persisters: a distinct physiological state of E. coli. BMC Microbiol 6:53. https://doi.org/10.1186/1471-2180-6-53
doi: 10.1186/1471-2180-6-53
pubmed: 16768798
pmcid: 1557402
Shao Y, Harrison EM, Bi D, Tai C, He X, Ou HY, Deng Z (2011) TADB: a web-based resource for Type 2 toxin–antitoxin loci in bacteria and archaea. Nucleic Acids Res 39:D606–D611. https://doi.org/10.1186/gb-2007-8-8-r155
doi: 10.1186/gb-2007-8-8-r155
pubmed: 20929871
Shapira A, Shapira S, Gal-Tanamy M, Zemel R, Tur-Kaspa R, Benhar I (2012) Removal of hepatitis C virus-infected cells by a zymogenized bacterial toxin. PLoS One 7:e32320. https://doi.org/10.1371/journal.pone.0032320
doi: 10.1371/journal.pone.0032320
pubmed: 22359682
pmcid: 3281143
Shapira S, Shapira A, Kazanov D, Hevroni G, Kraus S, Arber N (2017) Selective eradication of cancer cells by delivery of adenovirus-based toxins. Oncotarget 8:38581–38591. https://doi.org/10.18632/oncotarget.16934
doi: 10.18632/oncotarget.16934
pubmed: 28445136
pmcid: 5503555
Shi W, Zhang X, Jiang X, Yuan H, Lee JS, Barry CE, Wang H, Zhang W, Zhang Y (2011) Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science 333:1630–1632. https://doi.org/10.1126/science.1208813
doi: 10.1126/science.1208813
pubmed: 21835980
pmcid: 3502614
Shidore T, Triplett LR (2017) Toxin-antitoxin systems: implications for plant disease. Annu Rev Phytopathol 55:161–179. https://doi.org/10.1146/annurev-phyto-080516-035559
doi: 10.1146/annurev-phyto-080516-035559
pubmed: 28525308
Shimazu T, Degenhardt K, Nur-E-Kamal A, Zhang J, Yoshida T, Zhang Y, Inouye M (2007) NBK/BIK antagonizes MCL-1 and BCL-XL and activates BAK-mediated apoptosis in response to protein synthesis inhibition. Genes Dev 21:929–941. https://doi.org/10.1101/gad.1522007
doi: 10.1101/gad.1522007
pubmed: 17403773
pmcid: 1847711
Shimazu T, Mirochnitchenko O, Phadtare S, Inouye M (2014) Regression of solid tumors by induction of MazF, a bacterial mRNA endoribonuclease. J Mol Microbiol Biotechnol 24:228–233. https://doi.org/10.1159/000365509
doi: 10.1159/000365509
pubmed: 25196606
Silvaggi JM, Perkins JB, Losick R (2005) Small untranslated RNA antitoxin in Bacillus subtilis. J Bacteriol 187:6641–6650. https://doi.org/10.1128/JB.187.19.6641-6650.2005
doi: 10.1128/JB.187.19.6641-6650.2005
pubmed: 16166525
pmcid: 1251590
Solecki O, Mosbah A, Floc'h MB, Felden B (2015) Converting a Staphylococcus aureus toxin into effective cyclic pseudopeptide antibiotics. PLoS Biol 22:329–335. https://doi.org/10.1371/journal.pbio.3000337
doi: 10.1371/journal.pbio.3000337
Song S, Wood TK (2020) Toxin/antitoxin system paradigms: toxins bound to antitoxins are not likely activated by preferential antitoxin degradation. Adv Biosyst 4:1900290. https://doi.org/10.1002/adbi.201900290
doi: 10.1002/adbi.201900290
Srivastava A, Garg S, Jain R, Ayana R, Kaushik H, Garg L, Singh S (2019) Identification and functional characterization of a bacterial homologue of Zeta toxin in Leishmania donovani. FEBS Lett 593:1223–1235. https://doi.org/10.1002/1873-3468.13429
doi: 10.1002/1873-3468.13429
pubmed: 31074836
Stieber D, Gabant P, Szpirer CY (2008) The art of selective killing: plasmid toxin/antitoxin systems and their technological applications. Biotechniques 45:344–346. https://doi.org/10.2144/000112955
doi: 10.2144/000112955
pubmed: 18778262
Sundar S, Rajan MP, Piramanayagam S (2019) In silico derived peptides for inhibiting the toxin–antitoxin systems of Mycobacterium tuberculosis: basis for developing peptide-based therapeutics. Int J Peptide Res Therap 25:1467–1475. https://doi.org/10.1007/s10989-018-9792-8
doi: 10.1007/s10989-018-9792-8
Tan Q, Awano N, Inouye M (2011) YeeV is an Escherichia coli toxin that inhibits cell division by targeting the cytoskeleton proteins, FtsZ and MreB. Mol Microbiol 79:109–118. https://doi.org/10.1111/j.1365-2958.2010.07433.x
doi: 10.1111/j.1365-2958.2010.07433.x
pubmed: 21166897
Tiwari P, Arora G, Singh M, Kidwai S, Narayan OP, Singh R (2015) MazF ribonucleases promote Mycobacterium tuberculosis drug tolerance and virulence in guinea pigs. Nat Commun 6:1–3. https://doi.org/10.1038/ncomms7059
doi: 10.1038/ncomms7059
Trovatti E, Cotrim CA, Garrido SS, Barros RS, Marchetto R (2008) Peptides based on CcdB protein as novel inhibitors of bacterial topoisomerases. Bioorg Med Chem Lett 18:6161–6164. https://doi.org/10.1016/j.bmcl.2008.10.008
doi: 10.1016/j.bmcl.2008.10.008
pubmed: 18938079
Turnbull A, Bermejo-Rodríguez C, Preston MA, Garrido-Barros M, Pimentel B, de la Cueva-Méndez G (2019) Targeted cancer cell killing by highly selective miRNA-triggered activation of a prokaryotic toxin–antitoxin system. ACS Synth Biol 8:1730–1736. https://doi.org/10.1021/acssynbio.9b00172
doi: 10.1021/acssynbio.9b00172
pubmed: 31348648
Turnbull KJ, Gerdes K (2017) Hic A toxin of Escherichia coli derepresses hic AB transcription to selectively produce Hic B antitoxin. Mol Microbiol 104:781–792. https://doi.org/10.1111/mmi.13662
doi: 10.1111/mmi.13662
pubmed: 28266056
Unoson C, Wagner EG (2008) A small SOS-induced toxin is targeted against the inner membrane in Escherichia coli. Mol Microbiol 70:258–270. https://doi.org/10.1111/j.1365-2958.2008.06416.x
doi: 10.1111/j.1365-2958.2008.06416.x
pubmed: 18761622
Unterholzner SJ, Poppenberger B, Rozhon W (2013) Toxin-antitoxin systems: Biology, identification, and application. Mob Genet Elem 3:e26219. https://doi.org/10.4161/mge.26219
doi: 10.4161/mge.26219
Verma S, Kumar S, Gupta VP, Gourinath S, Bhatnagar S, Bhatnagar R (2015) Structural basis of Bacillus anthracis MoxXT disruption and the modulation of MoxT ribonuclease activity by rationally designed peptides. J Biomol Struct Dyn 33:606–624. https://doi.org/10.1080/07391102.2014.899924
doi: 10.1080/07391102.2014.899924
pubmed: 24650157
Vesper O, Amitai S, Belitsky M, Byrgazov K, Kaberdina AC, Engelberg-Kulka H, Moll I (2011) Selective translation of leaderless mRNAs by specialized ribosomes generated by MazF in Escherichia coli. Cell 147:147–157. https://doi.org/10.1016/j.cell.2011.07.047
doi: 10.1016/j.cell.2011.07.047
pubmed: 21944167
pmcid: 4894548
Vogel J, Argaman L, Wagner EG, Altuvia S (2004) The small RNA IstR inhibits synthesis of an SOS-induced toxic peptide. Curr Biol 14:2271–2276. https://doi.org/10.1016/j.cub.2004.12.003
doi: 10.1016/j.cub.2004.12.003
pubmed: 15620655
Walling LR, Butler JS (2016) Structural determinants for antitoxin identity and insulation of cross talk between homologous toxin-antitoxin systems. J Bacteriol 198:3287–3295. https://doi.org/10.1128/JB.00529-16
doi: 10.1128/JB.00529-16
pubmed: 27672196
pmcid: 5116932
Wang X, Wood TK (2011) Toxin-antitoxin systems influence biofilm and persister cell formation and the general stress response. Appl Environ Microbiol 77:5577–5583. https://doi.org/10.1128/AEM.05068-11
doi: 10.1128/AEM.05068-11
pubmed: 21685157
pmcid: 3165247
Wang X, Lord DM, Cheng HY, Osbourne DO, Hong SH, Sanchez-Torres V, Benedik MJ (2012) A new type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS. Nat Chem Biol 8:855–861. https://doi.org/10.1038/nchembio.1062
doi: 10.1038/nchembio.1062
pubmed: 22941047
pmcid: 3514572
Wang Y, Wang H, Hay AJ, Zhong Z, Zhu J, Kan B (2015) Functional RelBE-family toxin-antitoxin pairs affect biofilm maturation and intestine colonization in Vibrio cholerae. PLoS One 10:e0135696. https://doi.org/10.1371/journal.pone.0135696
doi: 10.1371/journal.pone.0135696
pubmed: 26275048
pmcid: 4537255
Weaver KE, Tritle DJ (1994) Identification and characterization of an Enterococcus faecalis plasmid pAD1-encoded stability determinant which produces two small RNA molecules necessary for its function. Plasmid 32:168–181. https://doi.org/10.1006/plas.1994.1053
doi: 10.1006/plas.1994.1053
pubmed: 7531349
Weel-Sneve R, Kristiansen KI, Odsbu I, Dalhus B, Booth J, Rognes T, Skarstad K, Bjørås M (2013) Single transmembrane peptide DinQ modulates membrane-dependent activities. PLoS Genet 9:e1003260. https://doi.org/10.1371/journal.pgen.1003260
doi: 10.1371/journal.pgen.1003260
pubmed: 23408903
pmcid: 3567139
Wen Y, Behiels E, Devreese B (2014) Toxin–antitoxin systems: their role in persistence, biofilm formation, and pathogenicity. Pathog Dis 70:240–249. https://doi.org/10.1111/2049-632X.12145
doi: 10.1111/2049-632X.12145
pubmed: 24478112
Wieteska Ł, Skulimowski A, Cybula M, Szemraj J (2014) Toxins vapC and pasB from prokaryotic TA modules remain active in mammalian cancer cells. Toxins 6:2948–2961. https://doi.org/10.3390/toxins6102948
doi: 10.3390/toxins6102948
pubmed: 25271785
pmcid: 4210878
Williams JJ, Hergenrother PJ (2012) Artificial activation of toxin–antitoxin systems as an antibacterial strategy. Trends Microbiol 20:291–298. https://doi.org/10.1016/j.tim.2012.02.005
doi: 10.1016/j.tim.2012.02.005
pubmed: 22445361
pmcid: 3952271
Winther KS, Gerdes K (2011) Enteric virulence associated protein VapC inhibits translation by cleavage of initiator tRNA. Proc Natl Acad Sci U S A 108:7403–7407. https://doi.org/10.1073/pnas.1019587108
doi: 10.1073/pnas.1019587108
pubmed: 21502523
pmcid: 3088637
Wood TK (2016) Combatting bacterial persister cells. Biotechnol Bioeng 113:476–483. https://doi.org/10.1002/bit.25721
doi: 10.1002/bit.25721
pubmed: 26264116
Wood TL, Wood TK (2016) The HigB/HigA toxin/antitoxin system of Pseudomonas aeruginosa influences the virulence factors pyochelin, pyocyanin, and biofilm formation. Microbiol Open 5:499–511. https://doi.org/10.1002/mbo3.346
doi: 10.1002/mbo3.346
Yamaguchi Y, Park JH, Inouye M (2009) MqsR, a crucial regulator for quorum sensing and biofilm formation, is a GCU-specific mRNA interferase in Escherichia coli. J Biol Chem 284:28746–28753. https://doi.org/10.1074/jbc.M109.032904
doi: 10.1074/jbc.M109.032904
pubmed: 19690171
pmcid: 2781420
Yamaguchi Y, Park JH, Inouye M (2011) Toxin-antitoxin systems in bacteria and archaea. Annu Rev Genet 45:61–79. https://doi.org/10.1146/annurev-genet-110410-132412
doi: 10.1146/annurev-genet-110410-132412
pubmed: 22060041
Yao J, Zhen X, Tang K, Liu T, Xu X, Chen Z, Guo Y, Liu X, Wood TK, Ouyang S, Wang X (2020) Novel polyadenylylation-dependent neutralization mechanism of the HEPN/MNT toxin/antitoxin system. Nucleic Acids Res 48:11054–11067. https://doi.org/10.1093/nar/gkaa855
doi: 10.1093/nar/gkaa855
pubmed: 33045733
pmcid: 7641770
Yashiro Y, Yamashita S, Tomita K (2019) Crystal structure of the enterohemorrhagic Escherichia coli AtaT-AtaR toxin-antitoxin complex. Structure 27:476–484.e3. https://doi.org/10.1016/j.str.2018.11.005
doi: 10.1016/j.str.2018.11.005
pubmed: 30612860
Yeo CC, Abu Bakar F, Chan WT, Espinosa M, Harikrishna JA (2016) Heterologous expression of toxins from bacterial toxin-antitoxin systems in eukaryotic cells: strategies and applications. Toxins 8:49. https://doi.org/10.3390/toxins8020049
doi: 10.3390/toxins8020049
pubmed: 26907343
pmcid: 4773802
Yoshizumi S, Zhang Y, Yamaguchi Y, Chen L, Kreiswirth BN, Inouye M (2009) Staphylococcus aureus YoeB homologues inhibit translation initiation. J Bacteriol 191:5868–5872. https://doi.org/10.1128/JB.00623-09
doi: 10.1128/JB.00623-09
pubmed: 19581360
pmcid: 2737954
Yuan J, Sterckx Y, Mitchenall LA, Maxwell A, Loris R, Waldor MK (2010) Vibrio cholerae ParE2 poisons DNA gyrase via a mechanism distinct from other gyrase inhibitors. J Biol Chem 285:40397–40408. https://doi.org/10.1074/jbc.M110.138776
doi: 10.1074/jbc.M110.138776
pubmed: 20952390
pmcid: 3001019
Zaychikova MV, Zakharevich NV, Sagaidak MO, Bogolubova NA, Smirnova TG, Andreevskaya SN, Danilenko VN (2015) Mycobacterium tuberculosis type II toxin-antitoxin systems: genetic polymorphisms and functional properties and the possibility of their use for genotyping. PLoS One 10:e0143682. https://doi.org/10.1371/journal.pone.0143682
doi: 10.1371/journal.pone.0143682
pubmed: 26658274
pmcid: 4680722
Zhang Y, Zhang J, Hoeflich KP, Ikura M, Qing G, Inouye M (2003) MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. Mol Cell 12:913–923. https://doi.org/10.1016/s1097-2765(03)00402-7
doi: 10.1016/s1097-2765(03)00402-7
pubmed: 14580342
Zhang Y, Inouye M (2011) RatA (YfjG), an Escherichia coli toxin, inhibits 70S ribosome association to block translation initiation. Mol Microbiol 79:1418–1429. https://doi.org/10.1111/j.1365-2958.2010.07506.x
doi: 10.1111/j.1365-2958.2010.07506.x
pubmed: 21323758
pmcid: 3062629
Zhang SP, Wang Q, Quan SW, Yu XQ, Wang Y, Guo DD, Peng L, Feng HY, He YX (2020) Type II toxin–antitoxin system in bacteria: activation, function, and mode of action. Biophys Rep 6:68–79. https://doi.org/10.1007/s41048-020-00109-8
doi: 10.1007/s41048-020-00109-8
Zhao J, Wang Q, Li M, Heijstra BD, Wang S, Liang Q, Qi Q (2013) Escherichia coli toxin gene hipA affects biofilm formation and DNA release. Microbiol 159:633–640. https://doi.org/10.1099/mic.0.063784-0
doi: 10.1099/mic.0.063784-0
Zielenkiewicz U, Kowalewska M, Kaczor C, Cegłowski P (2009) In vivo interactions between toxin-antitoxin proteins epsilon and zeta of streptococcal plasmid pSM19035 in Saccharomyces cerevisiae. J Bacteriol 191:3677–3684. https://doi.org/10.1128/JB.01763-08
doi: 10.1128/JB.01763-08
pubmed: 19346303
pmcid: 2681916