Tissue folding at the organ-meristem boundary results in nuclear compression and chromatin compaction.


Journal

Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876

Informations de publication

Date de publication:
23 02 2021
Historique:
entrez: 20 2 2021
pubmed: 21 2 2021
medline: 4 8 2021
Statut: ppublish

Résumé

Artificial mechanical perturbations affect chromatin in animal cells in culture. Whether this is also relevant to growing tissues in living organisms remains debated. In plants, aerial organ emergence occurs through localized outgrowth at the periphery of the shoot apical meristem, which also contains a stem cell niche. Interestingly, organ outgrowth has been proposed to generate compression in the saddle-shaped organ-meristem boundary domain. Yet whether such growth-induced mechanical stress affects chromatin in plant tissues is unknown. Here, by imaging the nuclear envelope in vivo over time and quantifying nucleus deformation, we demonstrate the presence of active nuclear compression in that domain. We developed a quantitative pipeline amenable to identifying a subset of very deformed nuclei deep in the boundary and in which nuclei become gradually narrower and more elongated as the cell contracts transversely. In this domain, we find that the number of chromocenters is reduced, as shown by chromatin staining and labeling, and that the expression of linker histone H1.3 is induced. As further evidence of the role of forces on chromatin changes, artificial compression with a MicroVice could induce the ectopic expression of H1.3 in the rest of the meristem. Furthermore, while the methylation status of chromatin was correlated with nucleus deformation at the meristem boundary, such correlation was lost in the

Identifiants

pubmed: 33608459
pii: 2017859118
doi: 10.1073/pnas.2017859118
pmc: PMC7923354
pii:
doi:

Substances chimiques

Chromatin 0
Histones 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

Copyright © 2021 the Author(s). Published by PNAS.

Déclaration de conflit d'intérêts

The authors declare no competing interest.

Références

Elife. 2015 Dec 01;4:e07811
pubmed: 26623515
PLoS Genet. 2012;8(5):e1002658
pubmed: 22570629
Adv Sci (Weinh). 2018 Dec 10;6(3):1801483
pubmed: 30775233
Plant Cell. 1990 Aug;2(8):755-67
pubmed: 2152125
Curr Biol. 2020 Jun 8;30(11):2013-2025.e3
pubmed: 32330420
Science. 2008 Dec 12;322(5908):1650-5
pubmed: 19074340
Genes Dev. 2017 Jan 1;31(1):72-83
pubmed: 28115468
Plant J. 2010 Jan;61(1):134-44
pubmed: 19807882
Development. 2013 Oct;140(19):4008-19
pubmed: 24004947
Plant Mol Biol. 1997 Jul;34(4):629-41
pubmed: 9247544
J Exp Bot. 2003 Jun;54(387):1585-95
pubmed: 12730267
Mol Biol Cell. 2018 Dec 1;29(25):3039-3051
pubmed: 30256731
Curr Opin Cell Biol. 2011 Dec;23(6):668-75
pubmed: 22079175
Nat Protoc. 2014 Oct;9(10):2464-75
pubmed: 25255090
Biophys J. 2012 Dec 19;103(12):2423-31
pubmed: 23260044
Genome Biol. 2019 Aug 7;20(1):157
pubmed: 31391082
Cell. 2010 Sep 3;142(5):773-86
pubmed: 20813263
Annu Rev Cell Dev Biol. 2011;27:157-84
pubmed: 21740231
Cell. 2020 May 14;181(4):800-817.e22
pubmed: 32302590
J Cell Sci. 2007 Apr 1;120(Pt 7):1200-8
pubmed: 17376962
Nat Cell Biol. 2014 Apr;16(4):376-81
pubmed: 24609268
Proc Natl Acad Sci U S A. 2016 Jul 26;113(30):E4294-303
pubmed: 27436908
Development. 2007 Mar;134(6):1051-60
pubmed: 17287247
Plant Physiol. 2015 Nov;169(3):2080-101
pubmed: 26351307
Plant Signal Behav. 2016;11(3):e1127497
pubmed: 26653277
J Exp Bot. 2013 Dec;64(18):5753-67
pubmed: 24153420
Development. 2018 Jun 4;145(11):
pubmed: 29739839
J Cell Sci. 2017 Jul 15;130(14):2243-2250
pubmed: 28646093
Nat Cell Biol. 2016 Aug;18(8):864-75
pubmed: 27398909
Nat Mater. 2014 Jun;13(6):638-644
pubmed: 24747782
Curr Biol. 2013 Dec 16;23(24):R1113-21
pubmed: 24355792
Nat Commun. 2012 Feb 14;3:671
pubmed: 22334074
BMC Biol. 2018 Feb 07;16(1):20
pubmed: 29415713
Plant Methods. 2017 Dec 21;13:114
pubmed: 29296118
Science. 2013 Aug 30;341(6149):1240104
pubmed: 23990565
Elife. 2015 May 06;4:05864
pubmed: 25946108
Plant Mol Biol. 1999 Sep;41(2):159-69
pubmed: 10579484
Curr Biol. 2016 Apr 12;:
pubmed: 27151660
Front Plant Sci. 2020 Jan 24;10:1728
pubmed: 32038692
Methods Mol Biol. 2014;1080:111-9
pubmed: 24132423
J Cell Sci. 2017 Feb 1;130(3):590-601
pubmed: 28049722
Nature. 2012 Jan 15;482(7383):103-6
pubmed: 22246322
Nat Methods. 2010 Jul;7(7):547-53
pubmed: 20543845
Curr Opin Plant Biol. 2006 Feb;9(1):72-7
pubmed: 16337829
Hum Mol Genet. 2000 Oct;9(16):2395-402
pubmed: 11005794
J Cell Biochem. 2010 Feb 15;109(3):460-7
pubmed: 20024954
Proc Natl Acad Sci U S A. 2016 Dec 20;113(51):E8238-E8246
pubmed: 27930326
Nat Mater. 2016 Dec;15(12):1287-1296
pubmed: 27548707
Genes Dev. 2002 Jan 1;16(1):6-21
pubmed: 11782440
Mol Syst Biol. 2014 Oct 30;10:755
pubmed: 25358340

Auteurs

Kateryna Fal (K)

Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, Université Claude Bernard Lyon 1, ENS de Lyon, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), CNRS, 69364 Lyon Cedex 07, France; kateryna.fal@cea.fr Henrik.Jonsson@slcu.cam.ac.uk olivier.hamant@ens-lyon.fr.
Department of Astronomy and Theoretical Physics, Lund University, SE22362 Lund, Sweden.
Laboratoire Physiologie Cellulaire & Végétale, Institut de Biosciences et de Biotechnologie de Grenoble, Commissariat à l'Energie Atomique et aux Energies Alternatives-Grenoble, 38054 Grenoble cedex 9, France.

Niklas Korsbo (N)

Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom.
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom.

Juan Alonso-Serra (J)

Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, Université Claude Bernard Lyon 1, ENS de Lyon, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), CNRS, 69364 Lyon Cedex 07, France.

Jose Teles (J)

Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom.

Mengying Liu (M)

Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, Université Claude Bernard Lyon 1, ENS de Lyon, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), CNRS, 69364 Lyon Cedex 07, France.

Yassin Refahi (Y)

Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom.
Université de Reims Champagne Ardenne, INRAE, Fractionnement des Agro-Ressources et Environnement, UMR A 614, 51097 Reims, France.

Marie-Edith Chabouté (ME)

Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 67084 Strasbourg Cedex, France.

Henrik Jönsson (H)

Department of Astronomy and Theoretical Physics, Lund University, SE22362 Lund, Sweden; kateryna.fal@cea.fr Henrik.Jonsson@slcu.cam.ac.uk olivier.hamant@ens-lyon.fr.
Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom.
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom.

Olivier Hamant (O)

Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, Université Claude Bernard Lyon 1, ENS de Lyon, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), CNRS, 69364 Lyon Cedex 07, France; kateryna.fal@cea.fr Henrik.Jonsson@slcu.cam.ac.uk olivier.hamant@ens-lyon.fr.

Articles similaires

Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family
1.00
Humans Magnetic Resonance Imaging Brain Infant, Newborn Infant, Premature
Arabidopsis Arabidopsis Proteins Osmotic Pressure Cytoplasm RNA, Messenger

Classifications MeSH